当前位置: 首页 > news >正文

自注意力机制self-attention中的KV 缓存

在自注意力机制中,KV 缓存(Key-Value Caching)主要用于加速模型在推理阶段的计算,尤其是在处理长序列或者生成任务(如文本生成)时,这种缓存机制可以显著提高效率。

1. KV 缓存的背景

在 Transformer 模型的推理阶段(例如在机器翻译、文本生成等任务中),每生成一个新的 token 时,模型需要重新计算该位置的自注意力分数。由于自注意力机制要求当前查询(Q)与整个输入序列中的键(K)和值(V)进行交互,随着序列长度的增长,计算复杂度会增加。

如果在生成序列时每个步骤都重新计算之前的 K 和 V 矩阵,这会带来较大的冗余计算。KV 缓存就是为了解决这一问题而引入的。

2. KV 缓存的含义

KV 缓存指的是在推理过程中,把先前步骤计算得到的 Key(K)和 Value(V)矩阵 缓存 起来,避免在生成新 token 时重复计算整个序列的 K 和 V。每生成一个新 token,只需要计算当前这个 token 的查询向量(Q)与之前缓存的 K 和 V 进行交互,而不需要重新计算之前的 K 和 V。

3. KV 缓存的工作原理

推理阶段
在生成文本时,Transformer模型是按步生成的(Auto-regressive generation),例如 GPT 模型。在生成每个新 token 时:

  1. 第一步:模型会根据输入的初始序列计算 K 和 V 矩阵,并存储这些矩阵作为缓存。
  2. 后续步骤:当模型生成下一个 token 时,它只需要计算当前这个 token 的 Q 矩阵,然后直接与缓存中的 K 和 V 进行交互计算。这样就避免了重新计算之前所有 token 的 K 和 V,从而提高了生成速度。

缓存更新阶段
随着模型生成新 token,新的 K 和 V 也会加入缓存。缓存中保持了当前序列的所有 K 和 V 信息,保证下一步生成时可以继续使用。

4. KV 缓存的优势

  • 降低计算复杂度:缓存机制使得每次生成新 token 时,只需要计算新的查询向量(Q),而不必重新计算整个序列的 K 和 V,从而降低了时间复杂度,特别是在长序列生成中显得尤为重要。
  • 减少冗余计算:每次只需更新少量的 KV 信息,而不是重复计算先前的 K 和 V。
  • 提升推理效率:尤其是在大模型(如 GPT、T5 等)的应用场景中,通过缓存可以大幅加速推理,提升生成速度。

5. KV 缓存的应用场景

  • 文本生成任务:如 GPT 系列模型、ChatGPT 等生成模型。在逐步生成每一个 token 时,KV 缓存可以加速序列生成,避免冗余计算。
  • 翻译任务:在翻译过程中,生成每一个目标语言的 token 时,利用 KV 缓存可以避免重新计算源语言部分的 K 和 V。
  • 长序列处理:对于长文本或长时间序列数据(如音频、视频分析),KV 缓存可以避免随着序列增长带来的计算量爆炸,极大地提升处理速度。

6. 示例:GPT中的KV缓存

在 GPT 模型生成文本时,例如生成句子 “The cat is on the mat”,在生成第一个单词 “The” 的时候,模型会计算 “The” 的 Q、K、V 并缓存起来。在生成下一个单词 “cat” 时,模型只需要计算 “cat” 的 Q,并利用之前缓存的 “The” 的 K 和 V 来计算自注意力分数。依次类推,生成每一个新 token 时,都利用已经缓存的 K 和 V,从而减少不必要的重复计算。

总结:

KV 缓存在自注意力机制中的作用是在推理阶段缓存之前计算过的 Key 和 Value 矩阵,避免在生成新 token 时重复计算,显著提升推理效率,特别是在长序列生成任务中效果明显。这种缓存机制是大模型推理阶段提高性能的关键优化之一。

http://www.lryc.cn/news/460916.html

相关文章:

  • 前端库--nanoid(轻量级的uuid)
  • 计算机基础-什么是网络端口?
  • 力扣动态规划基础版(斐波那契类型)
  • Java重修笔记 InetAddress 类和 Socket 类
  • 秋招突击——8/6——万得数据面试总结
  • STM32定时器
  • 第七课 Vue中的v-for遍历指令
  • 【NTN 卫星通信】卫星通信的专利
  • vue3 element table 插槽外的数据更新,插槽内的数据未更新。
  • 飞凌嵌入式FET527N-C核心板已适配OpenHarmony4.1
  • CVPR 2024最佳论文候选-pixelSplat论文解读
  • 在Android中如何切割一张图片中的不规则“消息体/图片/表情包等等”?
  • Jenkins+Ant+Jmeter接口自动化集成测试
  • JavaSE——集合4:List接口实现类—LinkedList
  • FPGA图像处理之三行缓存
  • 10月15日,每日信息差
  • 4G、5G通信中,“网络侧“含义
  • spring boot核心理解-各种starter
  • 解决海外社媒风控问题的工具——云手机
  • 全能PDF工具集 | PDF Shaper Ultimate v14.6 便携版
  • Maven入门
  • Chromium 中window.DOMParser接口说明c++
  • linux 安装gitlab
  • java基础(5)继承与多态
  • Flink消费Kafka实时写入Doris
  • 实现Web QQ音乐打开现有新标签页切换音乐
  • 从底层结构开始学习FPGA(15)----时钟结构(通俗版)
  • MacOS Sublime Text 解决中乱码
  • Python画笔案例-084 绘制 3D立方体
  • “八股文”面试:助力、阻力还是空谈?