当前位置: 首页 > news >正文

力扣动态规划基础版(斐波那契类型)

70. 爬楼梯icon-default.png?t=O83Ahttps://leetcode.cn/problems/climbing-stairs/

70.爬楼梯

方法一 动态规划

考虑转移方程和边界条件:

f(x) =  f(x -1) + f(x  - 2);f(1) = 1;f(2) = 2;

class Solution {public int climbStairs(int n) {//到第一阶的方法int p = 1;//到第二阶的方法int q = 2;if(n == 1){return p;}else if(n ==2){return q;}else{int r = 3;for(int i = 3; i <= n; i++){r = q + p;p = q;q = r;}return r;}}
}

时间复杂度为O(n)

方法二 矩阵快速幂

需要构造一下 ,对于齐次线性传递

class Solution {public int climbStairs(int n) {int [][] q= {{1,1},{1,0}};int[][] res = pow(n,q);return res[0][0];}//做一个矩阵的乘方public int[][] pow(int n,int[][] a){//做一个单位矩阵int[][] ret  = {{1,0},{0,1}};while(n > 0){//用到一个位运算if((n & 1) == 1){ret = multiply(ret,a);}n >>= 1;a = multiply(a,a);}return ret;}//根据构造的矩阵定义public int[][] multiply(int a[][],int b[][]){int c[][] = new int[2][2];for(int i = 0; i < 2; i++){for(int j = 0;j < 2;j++){c[i][j] = a[i][0] * b[0][j] + a[i][1] * b[1][j];}}return c;}
}

关于为什么第一个元素就是结果:

这里如果麻烦一点的话,假如这个初始向量不是1,1那你可以先用这个操作,然后最后×初始向量,但是要重新定义一个函数就是1*2的矩阵和2*2的矩阵相乘的方法 

509.斐波那契数

509. 斐波那契数icon-default.png?t=O83Ahttps://leetcode.cn/problems/fibonacci-number/

方法一 动态规划

和爬楼梯的转移条件都是一模一样的

class Solution {public int fib(int n) {int p = 0,q = 1,r = 0;if(n < 2){return n;}else{for(int i = 2; i <= n; i++){r = p + q;p = q;q = r;}return r;}}
}

方法二 矩阵快速幂

 和爬楼梯唯一的不同点就是主函数要用n -1

class Solution {public int fib(int n) {if (n < 2) {return n;}int  r[][] = {{1,1},{1,0}};int res[][] =  pow(n - 1,r);return res[0][0];}public int[][] pow(int n ,int[][] c){int [][]r = {{1,0},{0,1}};while(n > 0){if((n & 1) == 1){r = mul(r,c);}n >>= 1;c = mul(c,c);}return r;}public int[][] mul(int a[][],int b[][]){int r[][]  = new int[2][2];for(int i = 0; i < 2; i++){for(int j = 0;j < 2; j++){r[i][j] = a[i][0] * b[0][j] +  a[i][1]*b[1][j];}}return r;}}

 1137.第N个泰伯那契数

1137. 第 N 个泰波那契数icon-default.png?t=O83Ahttps://leetcode.cn/problems/n-th-tribonacci-number/

方法一 动态规划

class Solution {public int tribonacci(int n) {int p = 0,q = 1,r = 1;if(n == 0){return 0;}else if(n == 1){return 1; }else if(n == 2){return 1;}else{for(int i = 3; i <= n; i++){int   m = p + q + r;p = q;q = r;r = m;}return r;}}
}
class Solution {public int tribonacci(int n) {int p = 0,q = 1,r = 1;if(n == 0){return 0;}else if(n == 1){return 1; }else if(n == 2){return 1;}else{for(int i = 3; i <= n; i++){int   m = p + q + r;p = q;q = r;r = m;}return r;}}
}

746.使用最小花费爬楼梯 

746. 使用最小花费爬楼梯icon-default.png?t=O83Ahttps://leetcode.cn/problems/min-cost-climbing-stairs/分析一手核心问题还是找到这个状态转移方程

dp[i] = Math.min(dp[i -1] + cost[i -1], dp[i -2] + cost[i -2]);
class Solution {public int minCostClimbingStairs(int[] cost) {int n = cost.length;int[] dp = new int[n + 1];dp[0] = dp[1] = 0;for(int i = 2;i <= n;++i){dp[i] = Math.min(dp[i -1] + cost[i -1], dp[i -2] + cost[i -2]);}return dp[n];}
}

 时间:O(n) 空间O(n),可以发现第i项只和i -1 和i -2相关,所以可以用一个滚轮降低空间复杂度

class Solution {public int minCostClimbingStairs(int[] cost) {int n = cost.length;int[] dp = new int[n + 1];int pre = 0; int cur = 0;for(int i = 2;i <= n;++i){int nex = Math.min(cur + cost[i - 1],pre + cost[i - 2]);pre = cur;cur = nex;}return cur;}
}

这样的话空间复杂度就是O(1)了

198.打家劫舍

198. 打家劫舍icon-default.png?t=O83Ahttps://leetcode.cn/problems/house-robber/核心还是去找边界条件和这个状态转移方程,这个题目状态转移方程没以前那么好想两种假设:

1.偷窃第k间房屋,就不能偷窃第k - 1间房屋,偷窃总金额为前 k−2 间房屋的最高总金额与第 k 间房屋的金额之和。

2.不偷窃第 k 间房屋,偷窃总金额为前 k−1 间房屋的最高总金额。

边界条件:dp[0]的话就是nums【0】,dp【1】的话就是两个最大的、

状态转移方程:

dp[i] = Math.max(dp[i - 1],dp[i - 2] + nums[i]);
class Solution {public int rob(int[] nums) {if(nums == null){return 0;}int length = nums.length;if(length == 1){return nums[0];}int[] dp = new int[length];dp[0] = nums[0];dp[1] = Math.max(nums[0],nums[1]);for(int i = 2; i < length; i++){dp[i] = Math.max(dp[i - 1],dp[i - 2] + nums[i]);}return dp[length -1];}
}

模仿上一道题,这个题也能变成轮询的问题,降低空间复杂度

class Solution {public int rob(int[] nums) {if(nums == null){return 0;}int length = nums.length;if(length == 1){return nums[0];}if(length == 2){return Math.max(nums[0],nums[1]);}int pre = nums[0];int cur = Math.max(nums[0],nums[1]);for(int i = 2; i < length; i++){int nex = Math.max(cur,pre + nums[i]);pre = cur;cur = nex;}return cur;}
}

740.删除并获得点数 

740. 删除并获得点数icon-default.png?t=O83Ahttps://leetcode.cn/problems/delete-and-earn/题目有一点晦涩难懂,看了题解以后恍然大悟,发现就是一个乱序的打家劫舍哈哈哈,需要找出这个最大值,做一个数组,再用打家劫舍的函数就解决了,这个第一次做有点难想到动态规划

class Solution {public int deleteAndEarn(int[] nums) {int Maxval = 0;for(int val : nums){Maxval = Math.max(val,Maxval);}int [] sums = new int[Maxval + 1];//for(int val : nums){sums[val] += val;}return rob(sums);}
//纯打家劫舍public int rob(int[] nums){int n = nums.length;int dp[] = new int[n];dp[0] = nums[0];dp[1] = Math.max(nums[0],nums[1]);for(int i = 2; i < n; ++i){dp[i] = Math.max(dp[i - 1],dp[i - 2] + nums[i]);}return dp[n - 1];}
}

http://www.lryc.cn/news/460913.html

相关文章:

  • Java重修笔记 InetAddress 类和 Socket 类
  • 秋招突击——8/6——万得数据面试总结
  • STM32定时器
  • 第七课 Vue中的v-for遍历指令
  • 【NTN 卫星通信】卫星通信的专利
  • vue3 element table 插槽外的数据更新,插槽内的数据未更新。
  • 飞凌嵌入式FET527N-C核心板已适配OpenHarmony4.1
  • CVPR 2024最佳论文候选-pixelSplat论文解读
  • 在Android中如何切割一张图片中的不规则“消息体/图片/表情包等等”?
  • Jenkins+Ant+Jmeter接口自动化集成测试
  • JavaSE——集合4:List接口实现类—LinkedList
  • FPGA图像处理之三行缓存
  • 10月15日,每日信息差
  • 4G、5G通信中,“网络侧“含义
  • spring boot核心理解-各种starter
  • 解决海外社媒风控问题的工具——云手机
  • 全能PDF工具集 | PDF Shaper Ultimate v14.6 便携版
  • Maven入门
  • Chromium 中window.DOMParser接口说明c++
  • linux 安装gitlab
  • java基础(5)继承与多态
  • Flink消费Kafka实时写入Doris
  • 实现Web QQ音乐打开现有新标签页切换音乐
  • 从底层结构开始学习FPGA(15)----时钟结构(通俗版)
  • MacOS Sublime Text 解决中乱码
  • Python画笔案例-084 绘制 3D立方体
  • “八股文”面试:助力、阻力还是空谈?
  • 如何实现弹出式窗口
  • Lua 函数
  • HTML_文本标签