当前位置: 首页 > news >正文

谷歌-BERT-第一步:模型下载

1 需求

需求1:基于transformers库实现自动从Hugging Face下载模型

需求2:基于huggingface-hub库实现自动从Hugging Face下载模型

需求3:手动从Hugging Face下载模型


2 接口


3.1 需求1

示例一:下载到默认目录 

from transformers import BertModel, BertTokenizer# 初始化分词器和模型
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')# 现在您可以使用 tokenizer 和 model 进行推理或其他任务

示例二:下载到指定目录 

from transformers import BertModel, BertTokenizer# 指定模型和分词器的名称
model_name = 'bert-base-uncased'# 指定下载路径
cache_dir = './test3'# 下载模型和分词器,并指定下载路径
model = BertModel.from_pretrained(model_name, cache_dir=cache_dir)
tokenizer = BertTokenizer.from_pretrained(model_name, cache_dir=cache_dir)# 现在你可以使用模型和分词器进行推理或其他任务了
print("123")

3 .2 需求2

示例一:下载到默认目录  

from huggingface_hub import snapshot_downloadsnapshot_download(repo_id="bert-base-uncased")

示例二:下载到指定目录 

from huggingface_hub import snapshot_downloadsnapshot_download(repo_id="bert-base-chinese", local_dir="./test2", local_dir_use_symlinks=False)

3.3 需求3

手动导入模型和分词器

  • 模型权重文件:pytorch_model.bin 或 tf_model.h5
  • 模型配置文件:config.json
  • 分词器的词汇表文件:vocab.txt
  • 分词器配置文件:tokenizer.json、tokenizer_config.json

当手动下载 Hugging Face 模型时,通常需要以下类型的文件:

一、模型权重文件

  1. PyTorch 格式(.bin 或.pt)
    • 如果模型是基于 PyTorch 开发的,其权重文件通常以 .bin 或 .pt 格式存在。这些文件包含了模型的参数,例如神经网络的每层权重、偏置等信息。
    • 例如,对于一个预训练的 BERT 模型(PyTorch 版本),这些权重文件定义了模型如何将输入文本转换为有意义的表示。
  2. TensorFlow 格式(.h5 或.ckpt)
    • 对于基于 TensorFlow 的模型,可能会有 .h5 或者 .ckpt 格式的权重文件。.h5 文件是一种常见的保存 Keras(TensorFlow 后端)模型的格式,它可以包含模型的结构和权重信息。.ckpt 文件则是 TensorFlow 原生的检查点文件,主要用于保存模型在训练过程中的中间状态。

二、模型配置文件

  1. JSON 或 YAML 格式
    • 模型配置文件以 JSON 或 YAML 格式为主。这些文件描述了模型的架构,如模型的层数、每层的神经元数量、激活函数类型、输入输出形状等信息。
    • 以 GPT - 2 模型为例,其配置文件会指定模型是由多少个 Transformer 块组成,每个块中的头数量、隐藏层大小等关键架构参数。

三、分词器(Tokenizer)相关文件

  1. 词汇表文件(.txt 或.pkl 等)
    • 分词器用于将输入文本转换为模型能够处理的标记(tokens)。词汇表文件包含了模型所使用的所有词汇(对于基于单词的分词器)或者子词(对于基于子词的分词器,如 BPE、WordPiece 等)。
    • 例如,对于一个基于 BPE 算法的分词器,词汇表文件定义了模型能够识别的所有子词单元。这个文件可能是一个简单的文本文件(.txt),其中每行包含一个词汇或子词,也可能是经过序列化的 Python 对象(如 .pkl 文件,用于保存 Python 的字典等数据结构)。
  2. 分词器配置文件(JSON 或 YAML 格式)
    • 类似于模型配置文件,分词器配置文件描述了分词器的一些参数,如分词算法(BPE、WordPiece 等)、特殊标记(如开始标记、结束标记、填充标记等)的定义等。

具体需要下载哪些文件取决于模型的类型(如文本生成模型、图像分类模型等)、框架(PyTorch 或 TensorFlow 等)以及模型开发者所采用的存储和组织方式。

第一步

https://huggingface.co/

第二步

https://huggingface.co/models

第三步

https://huggingface.co/google-bert/bert-base-chinese

第四步

https://huggingface.co/google-bert/bert-base-chinese/tree/main

第五步 PyCharm手动添加模型和分词器


4 参考资料

huggingface下载模型文件(基础入门版)-CSDN博客

https://huggingface.co/docs/huggingface_hub/guides/download

http://www.lryc.cn/news/459300.html

相关文章:

  • FPGA实现PCIE采集电脑端视频缩放后转千兆UDP网络输出,基于XDMA+PHY芯片架构,提供3套工程源码和技术支持
  • Hi3061M开发板——系统时钟频率
  • C++入门基础知识110—【关于C++ if...else 语句】
  • 基于YOLO11深度学习的非机动车驾驶员头盔检测系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标检测、卷积神经网络
  • 图像分类-demo(Lenet),tensorflow和Alexnet
  • excel 单元格嵌入图片
  • GitHub简介与安装使用入门教程
  • HTML(五)列表详解
  • SparkSQL介绍及使用
  • 【聚星文社】3.2版一键推文工具更新啦
  • C++基础补充(03)C++20 的 std::format 函数
  • [论文笔记]DAPR: A Benchmark on Document-Aware Passage Retrieval
  • Spring Boot知识管理:智能搜索与分析
  • 操作系统(2) (进程调度/进程调度器类型/三种进程调度/调度算法)
  • 鸿蒙--知乎评论
  • 2024 - 两台CentOS服务器上的1000个Docker容器(每台500个)之间实现UDP通信(C语言版本)
  • 小程序该如何上架
  • XMOJ3065 旅游线路
  • 量化之一:均值回归策略
  • NVIDIA Bluefield DPU上的启动流程4个阶段分别是什么?作用是什么?
  • 最优美公式-欧拉公式,轻松理解版
  • 【力扣 | SQL题 | 每日3题】力扣1107,1112, 1077
  • 计算机网络(十一) —— 数据链路层
  • 使用PyTorch从0实现Fashion-MNIST数据集分类
  • Java数组的值拷贝和地址拷贝
  • 类与对象 中(剩余部分) 以及 日历
  • iOS 14 自定义画中画悬浮窗 Custom AVPictureInPictureController 实现方案
  • 【C#生态园】完整解读C#网络通信库:从基础到实战应用
  • js面试题---事件委托是什么
  • 谷歌浏览器 文件下载提示网络错误