当前位置: 首页 > news >正文

最优美公式-欧拉公式,轻松理解版

Alan Becker创作的火柴人大战数学的打斗视频,风靡一时,并在B站荣耀斩获了“金知奖”。下面是网友对此视频的部分评价截图。

视频原址:火柴人 vs 数学后续又一口气看完了“火柴人vs 几何”与“火柴人vs 物理”,通过火柴人的方式表现还是停新鲜的,作者别具一格。

这些视频里都或深或浅的穿插着一些数学与物理的知识,总是想写些什么,但都是被这样或那样的原因给耽搁了。今天下定决心试着解读一下其中的欧拉公式

贴一个“百度百科”的评价:它是数学里最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e圆周率π;两个单位:虚数单位i自然数的单位1;以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”。

下面准备从三个方面入手,尽我所能的做到通俗易懂的讲述欧拉公式是怎么来的?它又有什么用?

1、小e的前世今生

小e是一个数学中非常重要的常数,它与自然对数的底数相同,约为2.718。它最初由数学家约翰·纳皮尔在研究复利时发现,可以表示连续复利的极限情况。

小e与圆周率π均为超越数,它们的性质独特且重要。对于π,我们可以通过古老的割圆术来直观地理解其含义。π(C = πd→π = C/d)表示任意一个圆的周长与其直径之间的比率,这是所有圆共有的一个基本比率。

小e则代表了所有持续增长过程所共有的基本增长率。​阮一峰翻译的文章《数学常数e的含义》说的很好,这里摘录如下:

某种类的一群单细胞生物每24小时全部分裂一次。在不考虑死亡与变异等情况下,那么很显然,这群单细胞生物的总数量每天都会增加一倍。据此我们可以写出它的增量公式:growth = 2x(x表示天数)。

这个式子可以改写成:growth = (1+100%)*x 其中,1表示原有数量,100%表示单位时间内(24小时)的增长率。

根据细胞生物学,每过12个小时,也就是分裂进行到一半的时候,平均会新产生一半原数量的新细胞,新产生的细胞在之后的12小时内已经在分裂了。

因此一天24个小时可以分成两个阶段,每一个阶段的细胞数量都在前一个阶段的基础上增长50%,列出数学表达式:

亦即:

/gkimage/uw/dx/dz/uwdxdz.png

即在一个单位时间内,这些细胞的数量一共可以增至为原数量的2.25倍。

倘若这种细胞每过8小时就可以产生平均1/3的新细胞,新生细胞立即具备独立分裂的能力,那就可以将1天分成3个阶段,在一天内时间细胞的总数会增至:

/gkimage/cu/hb/iq/cuhbiq.png

即最后细胞数扩大为原数量的2.37倍。

实际上,这种分裂现象是不间断、连续的,每分每秒产生的新细胞,都会立即和母体一样继续分裂,一个单位时间(24小时)最多可以得到多少个细胞呢?答案是:

/gkimage/k1/lj/i3/k1lji3.png

当增长率为100%保持不变时,在单位时间内细胞种群最多只能扩大2.718……倍。数学家把这个数就称为e,它的含义是单位时间内,持续的翻倍增长所能达到的极限值

所以小e的极限形式的数学表达式如下图:

关于小e更为详尽的内容,譬如著名的72定律、斐波那契螺线等,请移步:数学-e的自然之美。

2、为什么i² = -1

引用一下以前的一个知乎回答,数学中的数先是从一维数轴开始。

图2.1 一维数轴

因电路的阻抗计算中若幅值与相角同时用一个式子表示,也就是说数已经移动至二维空间,或者说只能在二维空间中才能很好的表示这个数

比如下图中的C表示为-2+5i,它的模值为即阻抗的幅值,OB与x轴的夹角θ即阻抗的相角。

在电路的计算中用 来代替 i,因为 在电路中表示电流,以示区分。

图2.2 二维数轴

复数最重要的性质就是是旋转量,即两个复数积的辐角等于各自辐角的和。

-1 位于实轴负半轴,辐角为 π(180°)。开平方,按照前面说的辐角的性质,即是辐角减半,变为 π/2(90°),也即虚轴正半轴上的 的位置。

或者反过来看,一个复数乘以 i,就相当于逆时针旋转 π/2(90°)。那么 i² = 1*i*i,就是把 1 旋转了 2次π/2(90°),正好落在 -1 上。

3、欧拉公式的由来

函数​的n阶麦克劳林公式分别如下:

​这样我们就可以手算的值了,或许C语言标准函数库的三角函数就是这样计算的,个人臆测哈!但实际上我们是可以这么操作的,取得近似值,达到工程的要求即可。

#include "math.h"

其中的麦克劳林公式和泰勒Taylor公式相关,有一个原函数(公式) ,再造一个图像与原函数图像相似的多项式函数(公式) ,为了保证相似,只需要保证两个函数在某一点的初始值相等、1阶导数相等、2阶导数相等、……,并且n阶导数都相等

这里我们令​,另外前面说过,从而得到:

简化一下:

​当时,即可得到最令人着迷最优美上帝创造的公式——欧拉公式

式①的共轭复数为:

利用三角函数的性质(数学-三角函数及其图像),三角函数 cos(θ) 和 sin(θ) 具有偶函数和奇函数的性质,那么

将这些性质代入式①的共轭复数,我们得到:

联立式①与式②,可以得到下面两个变换的式子:

4、欧拉公式的用途

那么这么优美的公式又有啥用途呢?

1)“信号与系统”在频域分析和信号处理中就需要用到,用它将信号从时域转换到频域,或者从频域转换到时域。

2)在交流电路分析中,欧拉公式用于将正弦电流和电压表示为复数形式,从而简化了电路的分析和计算。

3)在量子力学中,欧拉公式有助于理解和计算波函数,网上看来的。

欧拉公式在数学、物理、工程等多个领域都有着广泛的应用,它是连接实数与复数、三角函数与指数函数的重要桥梁。

5、欧拉的生平

欧拉晚年的时候,欧洲所有的数学家都把他当作老师,下面摘录自“百度百科”:

莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导。

欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了47年。


如若喜欢这篇文章,不妨留下您宝贵的点赞,这将是对我莫大的鼓励。

http://www.lryc.cn/news/459279.html

相关文章:

  • 【力扣 | SQL题 | 每日3题】力扣1107,1112, 1077
  • 计算机网络(十一) —— 数据链路层
  • 使用PyTorch从0实现Fashion-MNIST数据集分类
  • Java数组的值拷贝和地址拷贝
  • 类与对象 中(剩余部分) 以及 日历
  • iOS 14 自定义画中画悬浮窗 Custom AVPictureInPictureController 实现方案
  • 【C#生态园】完整解读C#网络通信库:从基础到实战应用
  • js面试题---事件委托是什么
  • 谷歌浏览器 文件下载提示网络错误
  • 【记录】PPT|PPT 箭头相交怎么跨过
  • Linux中如何修改root密码
  • 中间件:SpringBoot集成Redis
  • 数据中心建设方案,大数据平台建设,大数据信息安全管理(各类资料原件)
  • TDD(测试驱动开发)是否已死?
  • Debezium系列之:实时从TDengine数据库采集数据到Kafka Topic
  • 数据结构(一)顺序表
  • 如何在 Jupyter Notebook 执行和学习 SQL 语句(中)
  • AutosarMCAL开发——基于EB Wdg驱动
  • Linux(1. 基本操作_命令)
  • 难点:Linux 死机定位(进程虚拟地址空间耗尽)
  • 小米路由器刷机istoreOS,愉快上网
  • 微信小程序 - 01 - 一些补充和注意点(补充ing...)
  • 微服务实战——登录(普通登录、社交登录、SSO单点登录)
  • windows 安装 ElasticSearch
  • Oracle Linux 9 (CentOS Stream 9) 安装 node.js 20
  • 【Axure安装包与汉化包附带授权证书】
  • SSH隧道验证的原理及实现例子
  • [计算机视觉]chapter1
  • RTKLIB学习记录【postpos、execses_b、execses_r】
  • docker,docker-desktop,docker-compose download