当前位置: 首页 > news >正文

矿井人员数据集,用于目标检测,深度学习,采用txt打标签,即yolo格式,也有原文件可以自己转换。总共3500张图片的数据量,划分给训练集2446张,

矿井人员数据集,用于目标检测,深度学习,采用txt打标签,即yolo格式,也有原文件可以自己转换。总共3500张图片的数据量,划分给训练集2446张:

### 矿井人员数据集用于目标检测的详细说明

#### 1. 数据集概述
矿井人员数据集是一个专门用于目标检测任务的数据集,旨在通过深度学习模型识别和定位矿井环境中的工作人员。该数据集包含3500张图片,每张图片中都有一个或多个矿工。为了训练和评估目标检测模型,这些图片已经被标注为YOLO(You Only Look Once)格式,这是一种广泛使用的对象检测框架。

#### 2. 数据集特点
- **图像数量**:总共3500张图片。
- **图像内容**:图片主要包含矿井环境中的工人,可能包括不同的工作场景、光照条件和背景。
- **标注格式**:采用YOLO格式进行标注,每个目标在图片中的位置用边界框表示,并附有类别标签。
- **数据划分**:
  - **训练集**:2446张图片,用于训练模型。
  - **验证集**:通常建议将剩余的图片(约1054张)划分为验证集和测试集。例如,可以将其中80%(约843张)作为验证集,20%(约211张)作为测试集。

#### 3. YOLO 标注格式
YOLO 标注格式是一种基于文本文件的标注方法,每个图片对应一个 `.txt` 文件。每个 `.txt` 文件中包含多行数据,每行代表一个目标,格式如下:

```
class_id x_center y_center width height
```

- **class_id**:目标类别的索引(从0开始)。
- **x_center, y_center**:边界框中心点相对于图片宽度和高度的归一化坐标(0到1之间)。
- **width, height**:边界框的宽度和高度相对于图片宽度和高度的归一化值(0到1之间)。

例如,如果一张图片的尺寸是640x480像素,且有一个矿工的边界框位于 (100, 150) 到 (300, 350),那么对应的标注可能是:

```
0 0.25 0.5 0.5 0.5
```

这里 `0` 表示矿工类别,`0.25` 和 `0.5` 分别是边界框中心点的归一化坐标,`0.5` 和 `0.5` 是边界框的宽度和高度的归一化值。

#### 4. 数据预处理
在使用数据集之前,需要进行一些预处理步骤,以确保数据的质量和一致性。

- **图像标准化**:将所有图像调整为相同的尺寸(例如640x480),以便于模型训练。
- **标签转换**:如果原始数据不是 YOLO 格式,需要编写脚本将其转换为 YOLO 格式。
- **数据增强**:为了增加模型的泛化能力,可以对图像进行旋转、缩放、翻转等增强操作。
- **数据清洗**:检查并删除标注错误或图像质量较差的数据。

#### 5. 数据集划分
为了训练和评估模型,需要将数据集划分为训练集、验证集和测试集。

- **训练集**:2446张图片,用于训练模型。
- **验证集**:843张图片,用于调优模型超参数和选择最佳模型。
- **测试集**:211张图片,用于最终评估模型性能。

可以使用以下代码来划分数据集:

```python
import os
import random
import shutil

# 数据集路径
dataset_path = 'path_to_dataset'
image_dir = os.path.join(dataset_path, 'images')
label_dir = os.path.join(dataset_path, 'labels')

# 创建输出目录
train_image_dir = os.path.join(dataset_path, 'train', 'images')
train_label_dir = os.path.join(dataset_path, 'train', 'labels')
val_image_dir = os.path.join(dataset_path, 'val', 'images')
val_label_dir = os.path.join(dataset_path, 'val', 'labels')
test_image_dir = os.path.join(dataset_path, 'test', 'images')
test_label_dir = os.path.join(dataset_path, 'test', 'labels')

os.makedirs(train_image_dir, exist_ok=True)
os.makedirs(train_label_dir, exist_ok=True)
os.makedirs(val_image_dir, exist_ok=True)
os.makedirs(val_label_dir, exist_ok=True)
os.makedirs(test_image_dir, exist_ok=True)
os.makedirs(test_label_dir, exist_ok=True)

# 获取所有图片文件名
image_files = [f for f in os.listdir(image_dir) if f.endswith('.jpg') or f.endswith('.png')]
random.shuffle(image_files)

# 计算分割点
train_split = int(0.7 * len(image_files))
val_split = int(0.9 * len(image_files))

# 划分数据集
train_files = image_files[:train_split]
val_files = image_files[train_split:val_split

http://www.lryc.cn/news/456277.html

相关文章:

  • 消息队列RabbitMQ
  • RabbitMQ概述
  • Golang学习路线
  • Flink从ck拉起任务脚本
  • GADBench Revisiting and Benchmarking Supervised Graph Anomaly Detection
  • 某象异形滑块99%准确率方案
  • CDN绕过学习
  • SpringBoot日常:redission的接入使用和源码解析
  • npm包管理深度探索:从基础到进阶全面教程!
  • 最新免费GPT4O和Midjourney
  • python操作OpenAI教程
  • 如何版本REST API:综合指南
  • Docker 环境下 Nginx 监控实战:使用 Prometheus 实现 Nginx 性能监控的完整部署指南
  • 网络安全-IPv4和IPv6的区别
  • 【移动端】事件基础
  • 软件测试比赛-学习
  • 力扣LeetCode-链表中的循环与递归使用
  • AFSim仿真系统 --- 系统简解_08 传感器与特征
  • 已经安装了qt,想添加mingw组件,包含gcc等
  • 数据库管理-第250期 深入浅出多主多活数据库技术- Cantian存储引擎(一)(20241009)
  • 信号用wire类型还是reg类型定义
  • 与鸿蒙同行,Java Solon v3.0 正式发布(向下兼容)
  • 数据驱动投资:AI在股票市场的应用
  • Tita使用小技巧:项目类型自定义,业务管理个性化
  • 国药准字:您购药的可靠指南
  • Python类学习(2)——未完待续
  • 微前端框架 qiankun 全面解析到源码实现
  • 初始化数据的正确方式?
  • Flutter平台嵌入器
  • 微信小程序——婚礼邀请函