当前位置: 首页 > news >正文

15分钟学 Python 第40天:Python 爬虫入门(六)第一篇

Day40 :Python 爬取豆瓣网前一百的电影信息

1. 项目背景

在这个项目中,我们将学习如何利用 Python 爬虫技术从豆瓣网抓取前一百部电影的信息。通过这一练习,您将掌握网页抓取的基本流程,包括发送请求、解析HTML、存储数据等核心技术。

2. 项目目标

  • 爬取豆瓣电影前一百部电影的信息,包括电影名称、评分、评价人数和影片链接。
  • 将抓取的数据保存为CSV文件,便于后续分析。

3. 核心工具

  • Python 3.x :作为编程语言。
  • requests :用于发送 HTTP 请求。
  • BeautifulSoup :用于解析 HTML 文档。
  • pandas :用于数据存储和处理。
  • CSV :文件格式,用于存储数据。

4. 环境准备

确保您的环境中安装了以下库。在终端中运行以下命令:

pip install requests beautifulsoup4 pandas

5. 数据抓取流程

5.1 确定目标网址

我们需要爬取的目标网址为:https://movie.douban.com/top250

5.2 发送请求

使用 requests 库向网页发送请求,获取网页内容。

5.3 解析HTML

使用 BeautifulSoup 解析获取的 HTML 文档。

5.4 提取电影信息

从解析的内容中提取所需的电影信息。

5.5 数据存储

将提取到的数据存储为 CSV 文件。

5.6 运行流程图

开始
发送请求到豆瓣
获取HTML内容
解析HTML
提取电影信息
存储数据到CSV
结束

6. 示例代码

以下是完整的代码示例,分为几个功能部分以便更好理解。

6.1 导入必要的库

import requests
from bs4 import BeautifulSoup
import pandas as pd

6.2 发送请求并获取页面内容

def fetch_page(url):headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'}response = requests.get(url, headers=headers)if response.status_code == 200:return response.textelse:print("请求失败", response.status_code)return None

6.3 解析HTML并提取信息

def parse_page(html):soup = BeautifulSoup(html, 'html.parser')movies = []for item in soup.find_all('div', class_='item'):title = item.find('span', class_='title').textrating = item.find('span', class_='rating_num').textnum_ratings = item.find('div', class_='star').find_all('span')[-1].text[:-3]  # 去掉"人评价"link = item.find('a')['href']movies.append({'Title': title,'Rating': rating,'Number of Ratings': num_ratings,'Link': link})return movies

6.4 存储数据到CSV

def save_to_csv(movies, filename='douban_movies.csv'):df = pd.DataFrame(movies)df.to_csv(filename, index=False, encoding='utf-8-sig')print(f"数据已保存到 {filename}")

6.5 主程序

def main():url = 'https://movie.douban.com/top250'html = fetch_page(url)if html:movies = parse_page(html)save_to_csv(movies)if __name__ == '__main__':main()

7. 数据分析与检查

运行完毕后,我们可以使用 pandas 读取 CSV 文件并检查数据:

def load_and_check_csv(filename='douban_movies.csv'):df = pd.read_csv(filename)print(df.head())print(f"总电影数: {len(df)}")load_and_check_csv()

8. 样例输出

执行后,输出的 douban_movies.csv 文件中将包含如下示例数据:

TitleRatingNumber of RatingsLink
肖申克的救赎9.7732099https://movie.douban.com/subject/278\n
这个杀手不太冷9.4626208https://movie.douban.com/subject/1309191\n
霸王别姬9.6595214https://movie.douban.com/subject/1291546\n

9. 注意事项

  1. 反爬虫机制:豆瓣可能会使用反爬虫技术,如果频繁请求可能会被封禁,建议在请求之间加上延迟。
  2. 合法合规:请遵循使用网站的使用协议,确保抓取信息不违反网站的政策。
  3. 数据质量:抓取到的内容质量可能会有所不同,需要在处理和存储时多加注意。

10. 总结

通过这个项目,您学习了怎样使用 Python 爬虫从豆瓣网抓取数据。掌握了数据获取、解析和存储的基本流程。接下来可以尝试改进程序,例如:增加多线程支持、提取更多信息、抓取多个页面等,以深入理解 Python 爬虫的潜力和应用。


在这里插入图片描述
怎么样今天的内容还满意吗?再次感谢观众老爷的观看。
最后,祝您早日实现财务自由,还请给个赞,谢谢!

http://www.lryc.cn/news/455087.html

相关文章:

  • 分层解耦-05.IOCDI-DI详解
  • HCIP-HarmonyOS Application Developer 习题(六)
  • 【电路基础 · 3】实际电压源 实际电流源;两种电源的等效情况;戴维南模型 诺顿模型(自用)
  • 案例-猜数字游戏
  • POI数据的处理与分析
  • ansible部分模块学习
  • 数据库(MySQL):使用命令从零开始在Navicat创建一个数据库及其数据表(二).设置主键自增等特点
  • SQL第13课——创建高级联结
  • 订阅ROS2中相机的相关话题并保存RGB、深度和点云图
  • Open WebUI | 自托管的类 ChatGPT 网站
  • 【Python】Python知识总结浅析
  • c#代码介绍23种设计模式_20策略者模式
  • FPGA-UART串口接收模块的理解
  • 复习HTML(基础)
  • Linux聊天集群开发之环境准备
  • can 总线入门———can简介硬件电路
  • 【重学 MySQL】六十、空间类型
  • python实现DES算法
  • 基于LORA的一主多从监测系统_框架搭建
  • 优化理论及应用精解【25】
  • 贝锐蒲公英网盘首发,秒建私有云,高速远程访问
  • [ 蓝桥 ·算法双周赛 ] 第 19 场 小白入门赛
  • HTML+CSS基础 第二季课堂笔记
  • 【Easy RL】Easy RL蘑菇书全书学习笔记
  • JavaWeb(二)
  • 【C++】--类和对象(2)
  • 最新BurpSuite2024.9专业中英文开箱即用版下载
  • C++ 观察者模式
  • 基于pytorch的手写数字识别-训练+使用
  • SpringBoot接收前端传递参数