当前位置: 首页 > news >正文

不可错过!CMU最新《生成式人工智能大模型》课程:从文本、图像到多模态大模型

1. 课程简介

从生成图像和文本到生成音乐和艺术,生成模型一直是人工智能的关键挑战之一。本课程将探讨推动生成模型和基础模型(Foundation Models)最近进展的机器学习和人工智能技术。学生将学习、开发并应用最先进的算法,使机器能够生成逼真且富有创意的内容。核心主题包括:学习的基本机制;如何构建生成模型及其他大型基础模型(例如,视觉和语言的 Transformer,扩散模型);如何训练这些模型(预训练,微调)并有效地调整它们(适配器、上下文学习);如何扩展到大规模数据集(多 GPU/分布式优化);如何将现有模型用于日常任务(生成代码、使用生成模型进行代码编写)。学生还将探讨其内在工作机制的理论基础和经验研究,了解模型可能出现的问题(偏见、幻觉、对抗攻击、数据污染)及应对这些问题的方法。本课程不仅通过实现帮助学生理解现代技术,还将使用现有的库和模型,探索生成模型的能力及其局限性。本课程适合已完成机器学习或深度学习入门课程的学生。

https://www.cs.cmu.edu/~mgormley/courses/10423/

学习成果:

课程结束后,学生应能够:

  • 区分不同的学习机制,如参数调整和上下文学习。

  • 实现现代生成建模方法的基础模型,如 Transformer 和扩散模型。

  • 将现有模型应用于文本、代码、图像、音频和视频的实际生成问题。

  • 使用技术来调整基础模型,完成任务如微调、适配器和上下文学习。

  • 使生成建模方法能够扩展到大型文本、代码或图像数据集。

  • 使用现有生成模型解决实际的判别问题及其他日常用例。

  • 分析大规模基础模型的理论属性。

  • 识别不同模态生成模型可能出现的问题。

  • 描述大规模生成 AI 系统的社会影响。

有关所涵盖主题的更多详细信息,请参见课程时间表页面。

2. 先修要求

参加本课程的学生应具备机器学习或深度学习入门课程的工作知识,需修完以下课程之一(10301 或 10315 或 10601 或 10701 或 10715 或 11485 或 11685 或 11785)。

必须严格遵守这些先修要求! 即使卡内基梅隆大学(CMU)的注册系统未阻止你注册此课程,仍有责任确保你在注册前具备所有先修要求。

讲者:

课程内容

文本生成式模型 Generative models of text

在这里插入图片描述

如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
    • L1.4.1 知识大模型
    • L1.4.2 生产大模型
    • L1.4.3 模型工程方法论
    • L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

    • L2.1 API接口
    • L2.1.1 OpenAI API接口
    • L2.1.2 Python接口接入
    • L2.1.3 BOT工具类框架
    • L2.1.4 代码示例
    • L2.2 Prompt框架
    • L2.3 流水线工程
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

    • L3.1 Agent模型框架
    • L3.2 MetaGPT
    • L3.3 ChatGLM
    • L3.4 LLAMA
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)👈

http://www.lryc.cn/news/454108.html

相关文章:

  • 重庆数字孪生工业互联网可视化技术,赋能新型工业化智能制造工厂
  • Qt QPushButton clicked信号浅析
  • Python时间戳转日期
  • 对 LLM 工具使用进行统一
  • webpack/vite的区别
  • 【笔记】信度检验
  • 使用Python实现无人机路径规划的灰狼优化算法
  • 理解递归和回溯
  • 知识图谱入门——3:工具分类与对比(知识建模工具:Protégé、 知识抽取工具:DeepDive、知识存储工具:Neo4j)
  • 使用指标进行量化交易时,有哪些需要注意的风险点呢
  • 数据结构阶段测试2的一点小补充
  • 量化交易里面的挂单成交率大概是多少呢
  • 【Android 14源码分析】Activity启动流程-3
  • Javascript客户端时间与服务器时间
  • 系统架构设计师教程 第11章 11.4 边缘计算概述 笔记
  • CSS全解析
  • 一款基于 Java 的可视化 HTTP API 接口快速开发框架,干掉 CRUD,效率爆炸(带私活源码)
  • CSS3渐变
  • Emissive CEO Fabien Barati谈《消失的法老》背后的故事:XR大空间体验的创新与未来
  • mysql设置表的某一个字段每天定时清零
  • 实例分割、语义分割和 SAM(Segment Anything Model)
  • 深度学习项目----用LSTM模型预测股价(包含LSTM网络简介,代码数据均可下载)
  • 《精通开关电源设计》笔记一
  • QLoRA代码实战
  • pyqt QGraphicsView 以鼠标为中心进行缩放
  • FPGA-Vivado-IP核-逻辑分析仪(ILA)
  • 基于webComponents的纯原生前端框架
  • OpenCV-背景建模
  • 一个简单的摄像头应用程序6
  • Pikachu-目录遍历