当前位置: 首页 > news >正文

动态规划(Dynamic Programming)——背包问题

动态规划(Dynamic Programming)

背包问题

目录

    • 动态规划(Dynamic Programming)
      • 背包问题
        • 01背包问题
          • 输入格式
          • 输出格式
          • 数据范围
          • 输入样例
          • 输出样例:
          • 二维
          • 一维
        • 完全背包问题
        • 多重背包问题
          • 输入格式
          • 输出格式
          • 数据范围
          • 输入样例
          • 输出样例:
          • 数据范围
          • 二进制优化
        • 分组背包问题
          • 输入格式
          • 输出格式
          • 数据范围
          • 输入样例
          • 输出样例:

01背包问题

动态规划

  • 状态表示 f[i][j]
    • 集合:所有考虑前i个物品,且体积不大于j的全部选法
    • 属性:Max
  • 状态计算:集合的划分

有 N件物品和一个容量是 V的背包。每件物品只能使用一次。

第 i 件物品的体积是 viv_ivi,价值是wiw_iwi

求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。

接下来有 N 行,每行两个整数 vi,wiv_i,w_ivi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤10000<N,V≤1000
0<vi,wi≤10000< vi,wiv_i,w_ivi,wi≤1000

输入样例
4 5
1 2
2 4
3 4
4 5
输出样例:
8
二维
  • 状态f[i][j]定义:前 i个物品,背包容量 j下的最优解(最大价值)

  • 当背包容量够,需要决策选与不选第 i 个物品:

    • 不选f[i][j] = f[i-1][j]
    • f[i][j]=f[i-1][j-v[i]]+w[i]
    • 我们的决策是如何取到最大价值,因此以上两种情况取max()

    代码

    #include <iostream>
    #include <algorithm>
    using namespace std;
    const int N = 1010;
    int v[N], w[N];
    int f[N][N];
    int main() {int n, m;cin >> n >> m;for (int i = 1; i <= n; ++i)cin >> v[i] >> w[i];for (int i = 1; i <= n; ++i) {for (int j = 1; j <= m; ++j) {f[i][j] = f[i - 1][j];if (v[i] <= j)  f[i][j] = max(f[i][j], f[i -1][j - v[i]] + w[i]);}}cout << f[n][m];return 0;
    }
    
一维

我们定义的状态f[i][j]可以求得任意合法的i与j最优解,但题目只需要求得最终状态f[n][m],因此我们只需要一维的空间来更新状态。

#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int v[N], w[N];
int f[N];
int main() {int n, m;cin >> n >> m;for (int i = 1; i <= n; ++i)cin >> v[i] >> w[i];for (int i = 1; i <= n; ++i) {for (int j = m; j >= v[i]; --j) {f[j] = max(f[j], f[j - v[i]] + w[i]);}}cout << f[m];return 0;
}

完全背包问题

动态规划

  • 状态表示 f[i][j]
    • 集合:所有考虑前i个物品,且体积不大于j的全部选法
    • 属性:Max
  • 状态计算:集合的划分

f[i][j]第i个物品选了k个,先去掉k个物品i,再加回来k个物品i

f[i][j] = f[i-1][j-v[i]*k]+w[i]*k

暴力dp

#include <iostream>using namespace std;
const int N = 1010;
int f[N][N],v[N], w[N];
int main() {int n, m;cin >> n >> m;for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i];for (int i = 1; i <= n; ++i) {for (int j = 1; j <= m; ++j) {for (int k = 0; k * v[i] <= j; ++k) {f[i][j] = max(f[i][j],f[i - 1][j - k * v[i]] + k * w[i]);// cout << f[i][j];}}}cout << f[n][m];return 0;
}

我们可以发现

f[i,j]=Max(f[i-1,j],f[i-1,j-v]+w,f[i-1.j-2v]+2w,...,f[i-1.j-kv]+kw

f[i,j-v]=Max( f[i-1,j-v],f[i-1.j-2v]+w,...,f[i-1.j-kv]+(k-1)w

代码

#include <iostream>
// #include <algorithm>
using namespace std;
const int N = 1010;
int f[N][N],v[N], w[N];
int main() {int n, m;cin >> n >> m;for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i];for (int i = 1; i <= n; ++i) {for (int j = 1; j <= m; ++j) {f[i][j] = f[i-1][j];if (j >= v[i])  f[i][j] = max(f[i][j], f[i][j-v[i]] + w[i]);           }}cout << f[n][m];return 0;
}

一维代码

#include <iostream>
// #include <algorithm>
using namespace std;
const int N = 1010;
int f[N],v[N], w[N];
int main() {int n, m;cin >> n >> m;for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i];for (int i = 1; i <= n; ++i) {for (int j = v[i]; j <= m; ++j) {// f[i][j] = f[i-1][j];f[j] = max(f[j], f[j-v[i]] + w[i]);           }}cout << f[m];return 0;
}

多重背包问题

动态规划

  • 状态表示 f[i][j]
    • 集合:所有考虑前i个物品,且体积不大于j的全部选法
    • 属性:Max
  • 状态计算:集合的划分

题目描述

有 N 种物品和一个容量是 V 的背包。

第 i种物品最多有 sis_isi 件,每件体积是 viv_ivi ,价值是 wiw_iwi

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式

第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。

接下来有 N 行,每行三个整数 viv_ivi, wiw_iwi, sis_isi ,用空格隔开,分别表示第 i种物品的体积、价值和数量。

输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤100
0<viv_ivi, wiw_iwi, sis_isi ≤100

输入样例
4 5
1 2 3
2 4 1
3 4 3
4 5 2
输出样例:
10

代码

#include <iostream>
using namespace std;
const int N = 110;
int f[N][N], w[N], v[N], s[N];
int main() {int n, m;cin >> n >> m;for (int i = 1; i <= n; ++i) cin >> v[i] >> w[i] >> s[i];for (int i = 1; i <= n; ++i)for (int j = 1; j <= m; ++j) {for (int k = 0; k * v[i] <= j && k <= s[i]; ++k) {f[i][j] = max(f[i][j], f[i - 1][j - k * v[i]] + k * w[i]);}}cout << f[n][m];return 0;
}

当数据范围扩大

数据范围

0<N≤1000

0<V≤2000

0<viv_ivi, wiw_iwi, sis_isi ≤2000

f(i, j) = Max(f(i-1,j),f(i-1,j-v)+w,f(i-1,j-2v)+2w+...+f(i-1,j-sv)+sw)
f(i, j-v) = Max(f(i-1,j-v),f(i-1,j-2v)+w,f(i-1,j-3v)+2w+...+f(i-1,j-sv)+(s-1)w,f(i, j) = Max(f(i-1,j),f(i-1,j-v)+w,f(i-1,j-2v)+2w+...+f(i-1,j-(s+1)v)+sw)

所以不能用完全背包问题解决

我们可以采用二进制优化+01背包问题的方法

二进制优化

给出一堆苹果和10个箱子,选出n个苹果。将这一堆苹果分别按照1,2,4,8,16,…512分到10个箱子里,那么由于任何一个数字x∈[0,1023] (第11个箱子才能取到1024,评论区有讨论这个)都可以从这10个箱子里的苹果数量表示出来,但是这样选择的次数就是 ≤10次

代码

#include <iostream>
using namespace std;
const int N = 1e5 + 10;
int v[N], w[N];
int f[2020];
int main() {int n, m;cin >> n >> m;int cnt = 0;while (n--) {int a, b, s;cin >> a >> b >> s;int k = 1;while (k <= s) {v[++cnt] = a * k;w[cnt] = b * k;s -= k;k *= 2;}if (s){v[++cnt] = a * s;w[cnt] = b * s;}}n = cnt;for (int i = 1; i <=n; ++i) {for (int j = m; j >= v[i]; --j) {f[j] = max(f[j], f[j - v[i]] + w[i]);}}cout << f[m];return 0;
}

分组背包问题

有 N 组物品和一个容量是 V的背包。

每组物品有若干个,同一组内的物品最多只能选一个。
每件物品的体积是vi,jv_{i,j}vi,j,价值是wi,jw_{i,j}wi,j,其中 i 是组号,j 是组内编号。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式

第一行有两个整数 N,V,用空格隔开,分别表示物品组数和背包容量。

接下来有 N 组数据:

  • 每组数据第一行有一个整数 SiS_{i}Si,表示第 i 个物品组的物品数量;
  • 每组数据接下来有 SiS_{i}Si 行,每行有两个整数vi,jv_{i,j}vi,j,wi,jw_{i,j}wi,j,用空格隔开,分别表示第 i个物品组的第 j 个物品的体积和价值;
输出格式

输出一个整数,表示最大价值。

数据范围

0<N,V≤100
0<Si≤100
0<vi,jv_{i,j}vi,j,wi,jw_{i,j}wi,jj≤100

输入样例
3 5
2
1 2
2 4
1
3 4
1
4 5
输出样例:

8

代码

#include <iostream>
using namespace std;
const int N = 110;
int v[N], w[N];
int f[110];
int main() {int n, m;cin >> n >> m;for (int i = 1; i <= n; ++i) {int s;cin >> s;for (int j = 1; j <= s; ++j) {cin >> v[j] >> w[j];}for (int k = m; k >= 1; --k) {for (int j = 1; j <= s; ++j) {if (v[j] <= k)f[k] = max(f[k], f[k - v[j]] + w[j]);}} }cout << f[m];return 0;
}
http://www.lryc.cn/news/4538.html

相关文章:

  • JVM学习02:内存结构
  • 6年软件测试经验,从我自己的角度理解自动化测试
  • 三种方式查看linux终端terminal是否可以访问外网ping,curl,wget
  • 【Call for papers】SIGCOMM-2023(CCF-A/计算机网络/2023年2月15日截稿)
  • Chapter5:机器人感知
  • [acwing周赛复盘] 第 90 场周赛20230211 补
  • 数组
  • MicroBlaze系列教程(4):AXI_UARTLITE的使用
  • GO 中的 init 函数
  • 使用C#编写k8s CRD Controller
  • Ansible---playbook剧本
  • Delphi 中TImageCollection和TVirtualImageList 控件实现high-DPI
  • Ros中如何给UR5配置自定义工具 | 在Rviz中给UR5机器人装载定义工具 | UR5配置自定义末端执行器
  • 数据库 delete 表数据后,磁盘空间为什么还是被一直占用?
  • docker-微服务篇
  • 图像优化篇
  • 在surface go 2上安装ubuntu 20.04
  • Java:SpringMVC的使用(1)
  • 自动化测试岗位求职简历编写规范+注意事项,让你的简历脱颖而出
  • C 字符串
  • 【每日一题Day115】LC2335装满杯子需要的最短总时长 | 贪心
  • Flink流计算处理-旁路输出
  • nginx正向代理的配置和使用
  • Oracle Trace File Analyzer 介绍及简单使用
  • 面试实战篇 | 快手本地生活,结合项目谈Redis实战项目场景?MySQL InnoDB存储引擎如何工作的?策略模式?
  • Hadoop之——WordCount案例与执行本地jar包
  • 利用git reflog 命令来查看历史提交记录,并使用提交记录恢复已经被删除掉的分支
  • 【软件测试】大厂测试开发你真的了解吗?测试开发养成记......
  • Redis中的hash结构和扩容机制
  • 【C++奇技淫巧】前置自增与后置自增的区别(++i,i++)【2023.02.08】