当前位置: 首页 > news >正文

【无人机设计与技术】四旋翼无人机,UAV仿真,轨迹跟踪PID控制

摘要

本文探讨了四旋翼无人机(UAV)在轨迹跟踪中的PID控制仿真方法。通过设计三轴方向的PID控制器,调节无人机的姿态与位置,使其能够准确跟踪预设轨迹。本文使用MATLAB/Simulink进行了建模与仿真,验证了PID控制算法在无人机轨迹跟踪中的有效性。实验结果表明,设计的控制器可以保证无人机在复杂轨迹下的平稳飞行,同时保持较好的跟踪精度。

理论

四旋翼无人机动力学模型

四旋翼无人机是一种由四个对称安装的旋翼产生推力的飞行器,其动力学模型较为复杂。无人机的运动包括六个自由度:三个平移自由度(x, y, z)和三个旋转自由度(俯仰角、滚转角、偏航角)。这些运动由旋翼的转速控制,通过调节每个旋翼的转速,可以控制无人机的姿态和位置。

四旋翼无人机的动力学方程可以通过牛顿-欧拉方程推导得到。姿态控制主要涉及旋转自由度的控制(俯仰、滚转、偏航),而位置控制则涉及平移自由度的控制(x, y, z)。

PID控制器

PID控制器是一种经典的反馈控制器,通过调节比例(P)、积分(I)和微分(D)三个参数来控制系统的输出。其核心思想是通过当前的误差信号来调节控制输出,从而使系统跟踪期望轨迹。在四旋翼无人机的控制中,PID控制器分别用于姿态和位置控制:

  • 比例控制:与误差成正比的输出调节,加快系统响应速度。

  • 积分控制:消除稳态误差。

  • 微分控制:对误差的变化率进行响应,减少超调和震荡。

PID控制器通过调节这三个参数可以实现对无人机的平稳控制。

实验结果

实验通过MATLAB/Simulink搭建了四旋翼无人机的动力学模型,并使用PID控制器进行轨迹跟踪仿真。实验结果展示了无人机在轨迹跟踪中的位置和姿态响应情况。以下是主要实验结果:

  1. 位置跟踪:如图所示,x、y、z三个方向的实际位置与预设轨迹进行了比较,红色虚线为期望轨迹,蓝色实线为无人机的实际轨迹。可以看出,PID控制器能够实现对期望轨迹的良好跟踪,误差较小。

  2. 姿态响应:无人机的俯仰角(phi)、滚转角(theta)和偏航角(psi)的响应曲线显示,PID控制器能够快速稳定姿态,并且在有扰动的情况下能够迅速恢复到平衡状态。

  3. 三维轨迹:如图1所示,无人机在三维空间中的螺旋轨迹表现出了平稳的控制效果,表明控制器在复杂轨迹跟踪中的表现良好。

部分代码

以下是基于MATLAB实现的四旋翼无人机轨迹跟踪的PID控制部分代码:

% 定义PID参数
Kp_x = 1.2; Ki_x = 0.1; Kd_x = 0.05;
Kp_y = 1.2; Ki_y = 0.1; Kd_y = 0.05;
Kp_z = 1.5; Ki_z = 0.1; Kd_z = 0.08;% 期望轨迹
t = 0:0.1:150; 
x_d = sin(0.05*t);
y_d = cos(0.05*t);
z_d = 0.1 * t;% 初始化无人机位置和速度
x = 0; y = 0; z = 0;
vx = 0; vy = 0; vz = 0;% PID控制器实现
for k = 1:length(t)% 计算位置误差ex = x_d(k) - x;ey = y_d(k) - y;ez = z_d(k) - z;% PID控制输出ux = Kp_x * ex + Ki_x * sum(ex) + Kd_x * diff(ex);uy = Kp_y * ey + Ki_y * sum(ey) + Kd_y * diff(ey);uz = Kp_z * ez + Ki_z * sum(ez) + Kd_z * diff(ez);% 更新无人机状态vx = vx + ux * dt;vy = vy + uy * dt;vz = vz + uz * dt;x = x + vx * dt;y = y + vy * dt;z = z + vz * dt;% 存储数据x_data(k) = x;y_data(k) = y;z_data(k) = z;
end% 绘制轨迹图
figure;
plot3(x_data, y_data, z_data, 'b-', 'LineWidth', 2);
hold on;
plot3(x_d, y_d, z_d, 'r--', 'LineWidth', 1.5);
xlabel('X [m]'); ylabel('Y [m]'); zlabel('Z [m]');
title('3D Trajectory Tracking');
legend('Actual Path', 'Desired Path');

参考文献

  1. Bouabdallah, S., Murrieri, P., & Siegwart, R. (2004). Design and Control of an Indoor Micro Quadrotor. Proceedings of the 2004 IEEE International Conference on Robotics and Automation.

  2. Hoffmann, G. M., Waslander, S. L., & Tomlin, C. J. (2008). Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment. AIAA Guidance, Navigation and Control Conference.

  3. Mahony, R., Kumar, V., & Corke, P. (2012). Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor. IEEE Robotics & Automation Magazine*, 19(3), 20-32.

http://www.lryc.cn/news/452133.html

相关文章:

  • 回归预测|基于卷积神经网络-支持向量机的数据回归预测Matlab程序CNN-SVM 卷积提取特征与原始特征进行融合预测
  • javaScript基础知识汇总
  • 《动手学深度学习》笔记2.2——神经网络从基础→进阶 (参数管理-每层的权重/偏置)
  • 双端之Nginx+Php结合PostgreSQL搭建Wordpress
  • Another redis desktop manager使用说明
  • 【git】配置 Git 的换行符处理和安全性||安装 Ruby
  • VMware ESXi 8.0U3b macOS Unlocker OEM BIOS 2.7 Dell HPE 定制版 9 月更新发布
  • Unity 代码裁剪(Strip Engine Code)
  • 单目3d重建DUSt3R 笔记
  • AI驱动TDSQL-C Serverless 数据库技术实战营-与AI的碰撞
  • C++之String类(上)
  • kubernets基础-ingress详细介绍
  • jenkins部署Maven和NodeJS项目
  • 在unity资源中发现无效引用
  • C#知识|基于反射和接口实现抽象工厂设计模式
  • 【分布式微服务云原生】gRPC vs RPC:深入探索远程过程调用的现代与经典
  • 听说这是MATLAB基础?
  • 【CSS/HTML】圣杯布局和双飞翼布局实现两侧宽度固定,中间宽度自适应及其他扩展实现
  • 数据流和数据流处理技术
  • (IDEA)spring项目导入本地jar包方法和项目打包时找不到引入本地jar包的问题解决方案
  • 解决TikTok无网络连接问题解析
  • k8s中,ingress的实现原理,及其架构。
  • 【数据结构强化】应用题打卡
  • 解决 MySQL 服务无法启动:failed to restart mysql.service: unit not found
  • Dubbo和Http的调用有什么区别
  • ARM 架构、cpu
  • 【React】入门Day03 —— Redux 与 React Router 核心概念及应用实例详解
  • u2net网络模型训练自己数据集
  • 登录功能开发 P167重点
  • 数据架构图:从数据源到数据消费的全面展示