当前位置: 首页 > news >正文

回归预测|基于卷积神经网络-支持向量机的数据回归预测Matlab程序CNN-SVM 卷积提取特征与原始特征进行融合预测

回归预测|基于卷积神经网络-支持向量机的数据回归预测Matlab程序CNN-SVM 卷积提取特征与原始特征进行融合预测

文章目录

  • 一、基本原理
      • 原理
      • 流程
      • 总结
  • 二、实验结果
  • 三、核心代码
  • 四、代码获取
  • 五、总结

回归预测|基于卷积神经网络-支持向量机的数据回归预测Matlab程序CNN-SVM 卷积提取特征与原始特征进行融合预测

一、基本原理

回归预测结合卷积神经网络(CNN)和支持向量机(SVM)是一种有效的数据分析方法,可以利用CNN提取数据特征,再通过SVM进行回归预测。以下是详细原理和流程的介绍,以及一个基本的Matlab程序框架。

原理

  1. 卷积神经网络(CNN)

    • CNN适合处理图像、时间序列等高维数据,通过卷积层提取局部特征。
    • 网络包括卷积层、激活层、池化层和全连接层,逐层提取特征并减少维度。
  2. 支持向量机(SVM)

    • SVM是一种监督学习模型,适合于分类和回归问题。
    • 在回归中,SVM通过寻找最佳超平面来拟合数据,能够有效处理高维数据。
  3. 特征融合

    • 将CNN提取的特征与原始特征结合,利用SVM进行最终的回归预测。

流程

  1. 数据准备

    • 收集并预处理数据,确保数据格式适合输入到CNN。
  2. 构建CNN模型

    • 定义CNN架构,包括卷积层、池化层和全连接层。
    • 使用训练数据对CNN进行训练,提取特征。
  3. 特征提取

    • 使用训练后的CNN对训练集和测试集进行前向传播,提取特征。
  4. 特征融合

    • 将CNN提取的特征与原始特征进行拼接,形成新的特征集。
  5. 训练SVM模型

    • 使用融合后的特征集训练SVM回归模型。
  6. 预测与评估

    • 使用测试集中的数据进行预测,并评估模型性能(如MSE、R²等指标)。

总结

通过将CNN与SVM结合,可以充分利用CNN强大的特征提取能力以及SVM的回归性能,从而提高回归预测的准确性。在实际应用中,可以根据具体问题调整CNN参数和SVM的配置,以获得最佳效果。

二、实验结果

1.输入多个特征,输出单个变量,多变量回归预测;

2.excel数据,前6列输入,最后1列输出,运行主程序即可,所有文件放在一个文件夹;

3.命令窗口输出R2、MSE、MAE;

4.可视化:代码提供了可视化工具,用于评估模型性能,包括真实值与预测值的收敛图、对比图、拟合图、残差图。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

三、核心代码

%%  导入数据
res = xlsread('数据集.xlsx');%%  数据分析
num_size = 0.8;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

四、代码获取

五、总结

包括但不限于
优化BP神经网络,深度神经网络DNN,极限学习机ELM,鲁棒极限学习机RELM,核极限学习机KELM,混合核极限学习机HKELM,支持向量机SVR,相关向量机RVM,最小二乘回归PLS,最小二乘支持向量机LSSVM,LightGBM,Xgboost,RBF径向基神经网络,概率神经网络PNN,GRNN,Elman,随机森林RF,卷积神经网络CNN,长短期记忆网络LSTM,BiLSTM,GRU,BiGRU,TCN,BiTCN,CNN-LSTM,TCN-LSTM,BiTCN-BiGRU,LSTM–Attention,VMD–LSTM,PCA–BP等等

用于数据的分类,时序,回归预测。
多特征输入,单输出,多输出

http://www.lryc.cn/news/452132.html

相关文章:

  • javaScript基础知识汇总
  • 《动手学深度学习》笔记2.2——神经网络从基础→进阶 (参数管理-每层的权重/偏置)
  • 双端之Nginx+Php结合PostgreSQL搭建Wordpress
  • Another redis desktop manager使用说明
  • 【git】配置 Git 的换行符处理和安全性||安装 Ruby
  • VMware ESXi 8.0U3b macOS Unlocker OEM BIOS 2.7 Dell HPE 定制版 9 月更新发布
  • Unity 代码裁剪(Strip Engine Code)
  • 单目3d重建DUSt3R 笔记
  • AI驱动TDSQL-C Serverless 数据库技术实战营-与AI的碰撞
  • C++之String类(上)
  • kubernets基础-ingress详细介绍
  • jenkins部署Maven和NodeJS项目
  • 在unity资源中发现无效引用
  • C#知识|基于反射和接口实现抽象工厂设计模式
  • 【分布式微服务云原生】gRPC vs RPC:深入探索远程过程调用的现代与经典
  • 听说这是MATLAB基础?
  • 【CSS/HTML】圣杯布局和双飞翼布局实现两侧宽度固定,中间宽度自适应及其他扩展实现
  • 数据流和数据流处理技术
  • (IDEA)spring项目导入本地jar包方法和项目打包时找不到引入本地jar包的问题解决方案
  • 解决TikTok无网络连接问题解析
  • k8s中,ingress的实现原理,及其架构。
  • 【数据结构强化】应用题打卡
  • 解决 MySQL 服务无法启动:failed to restart mysql.service: unit not found
  • Dubbo和Http的调用有什么区别
  • ARM 架构、cpu
  • 【React】入门Day03 —— Redux 与 React Router 核心概念及应用实例详解
  • u2net网络模型训练自己数据集
  • 登录功能开发 P167重点
  • 数据架构图:从数据源到数据消费的全面展示
  • useEffect 与 useLayoutEffect 的区别