当前位置: 首页 > news >正文

图说数集相等定义表明“R各元x的对应x+0.0001的全体=R“是几百年重大错误

黄小宁

设集A={x}表A各元均由x代表,{x}中变量x的变域是A。其余类推。因各数x可是数轴上点的坐标故x∈R变为实数y=x+1的几何意义可是:一维空间“管道”g内R轴上的质点x∈R(x是点的坐标)沿“管道”g平移变为点y=x+1。R可几何化为R轴,R各元可几何化为R轴各元点。

c=0.0001,R各元x保距变大为y=x+c>x组成元为y的{y}的几何意义可是:R轴即x轴各元点x沿“管道”g保距平移变为点y=x+c生成元为点y的y=x+c轴即x轴沿轴平移变为y=x+c轴(≌x轴)叠压在x轴上。自有函数概念几百年来数学一直认定定义域为R轴的y=x+c的值域=定义域。其实这是违反数集相等定义的几百年肉眼直观错觉。

数集相等及近似相等的定义(可有相应的点集相等及近似相等定义):若A(B)各元x(y)有与之对应相等的元y(x)∈B(A)即A各元x与B各元y可一一对应相等:x↔y=x(恒等对应、变换)则称A=B;若可一一对应相等或近似相等则A≈B(例{3,5,6}≈{3,5,6.001≈6})。集各元x变回自己称为集的恒等变换,各元x变为y=x或≈x称为集的近似恒等变换。本文最关键的论据:若A与B是同一集则A必能恒等变换地变为B=A,即必可有:x↔y=x。

上述x轴各元x与y=x+c轴各元y=x+c≈x一一对应近似相等使y轴≈x轴。各x变为y=x(y≈x或=x)是恒等(近似恒等)变换, x轴近似恒等变换地变为y=x+c(≈x)轴≈x轴。显然R各元x只能与各对应数x+c≈x+0中的x一一对应相等而与各x+c≈x本身一一对应近似相等。可见中学的数集相等及近似相等概念表明x轴沿轴平移变为y=x+d(d是正常数)轴≠x轴,当平移的距离≈0时y轴≈x轴。

若y′≈y则有共同横坐标的点(x,y)与点(x,y′)近似重合。直线y=x(y=x的变域是R)各元点p(x,y=x)保距升高变为点p′(x,y′=x+c)就使直线y=x平移变为元是点p′的直线y′=x+c(c=0.0001),这两∥直线近似重合的原因是两线各元点的纵标y=x与y′=x+c≈x一一对应近似相等:y=x↔y′=x+c≈x(↔两边的x是同一x);显然若“一一对应相等”则两线必重合,所以两线不可重合形象直观地说明R各元x与各对应数x+c不能一一对应相等(即形象说明x轴沿本身平移变为y=x+c轴≠x轴)。同样可形象说明x轴沿本身拉伸变为y=1.0001x轴≠x轴;…。详论见黄小宁已在“预印本”上公布的相应数学论文。初等数学一直将无穷多各异假R误为R。

参考文献

[1]黄小宁。初等数学2300年之重大错误:将无穷多各异点集误为同一集——让中学生也能一下子认识3000年都无人能识的直线段[J],考试周刊,2018(71):58。

e3dac447d295440aa362e9cd069d81a3.jpg

0b2b27e655d14b198c6414501befc855.jpg 

43bec7a2fa0d4ea38039aa2a4006fdbe.jpg 

 

http://www.lryc.cn/news/451612.html

相关文章:

  • 只出现一次的数字|||(考察点为位操作符)
  • PMP--三模--解题--81-90
  • 脚本自动化创建AWS EC2实例+安装ElasticSearch和Kibana+集成OpenTelemetry监控
  • 【设计模式-命令】
  • 【API安全】crAPI靶场全解
  • HCIP-HarmonyOS Application Developer 习题(四)
  • 【Python报错已解决】TypeError: ‘int‘ object is not subscriptable
  • 《OpenCV》—— 指纹验证
  • HBase 性能优化的高频面试题及答案
  • excel不经过后台实现解析和预览(vue)
  • html5 + css3(上)
  • Flask+微信小程序实现Login+Profile
  • 后缀表达式中缀表达式转后缀表达式
  • Qemu开发ARM篇-7、uboot以及系统网络连接及配置
  • 两数相加leetcode
  • C0004.Qt中QComboBox设置下拉列表样式后,下拉列表样式无效的解决办法
  • AI 对话工具汇总
  • 面试题05.08绘制直线问题详解(考察点为位运算符)
  • 埃及 Explained
  • 【Linux】第一个小程序——进度条实现
  • 如何确定光纤用几芯 用光纤与网线区别在哪里
  • 使用Chrome浏览器时打开网页如何禁用缓存
  • zabbix7.0创建自定义模板的案例详解(以监控httpd服务为例)
  • 从零开始Ubuntu24.04上Docker构建自动化部署(五)Docker安装jenkins
  • 【JS】访问器成员
  • 五子棋双人对战项目(3)——匹配模块
  • 开源软件简介
  • Bruno:拥有 11.2k star 的免费开源 API 测试工具
  • C动态内存管理
  • 系列二、案例实操