当前位置: 首页 > news >正文

大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(已更完)
  • ClickHouse(已更完)
  • Kudu(已更完)
  • Druid(正在更新…)

章节内容

上节我们完成了如下的内容:

  • Apache Druid 系统架构 核心组件介绍
  • Druid 单机模式配置启动

在这里插入图片描述

整体介绍

Apache Druid 是一种高性能、分布式的列式存储数据库,专门用于实时分析和查询大规模数据集。它适用于 OLAP(在线分析处理)场景,尤其在处理大数据实时流时表现优异。Druid 的架构由多个组件组成,主要包括数据摄取、存储、查询和管理。

在集群配置方面,Druid 通常由以下节点构成:

  • 数据摄取层:使用 MiddleManager 节点来处理数据的实时摄取,负责从不同数据源(如 Kafka、HDFS 等)读取数据并进行实时处理。
  • 存储层:数据存储在 Historical 节点上,这些节点负责存储和管理较老的数据,支持高效的查询。数据被以列式格式存储,优化了查询性能。
  • 查询层:Broker 节点充当查询路由器,接受用户的查询请求并将其分发到相应的 Historical 或 Real-time 节点,然后将结果汇总返回给用户。
  • 协调层:Coordinator 节点负责集群的状态管理和数据分配,确保数据均匀分布并自动处理节点故障。

Druid 的配置文件允许用户自定义参数,如 JVM 设置、内存分配和数据分片策略,以便根据不同的工作负载和性能需求进行优化。此外,Druid 还支持多种查询语言,包括 SQL,便于用户进行灵活的数据分析。整体上,Druid 提供了一种高效、可扩展的解决方案,适合需要快速实时分析的大数据应用场景。

修改配置【续接上篇】

historical

参数大小根据实际情况调整

vim $DRUID_HOME/conf/druid/cluster/data/historical/jvm.config

原配置内容如下所示:

-server
-Xms8g
-Xmx8g
-XX:MaxDirectMemorySize=13g
-XX:+ExitOnOutOfMemoryError
-Duser.timezone=UTC
-Dfile.encoding=UTF-8
-Djava.io.tmpdir=var/tmp
-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager

修改内容如下:

-server
-Xms512m
-Xmx512m
-XX:MaxDirectMemorySize=1g
-XX:+ExitOnOutOfMemoryError
-Duser.timezone=UTC+8
-Dfile.encoding=UTF-8
-Djava.io.tmpdir=var/tmp
-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager

修改结果如下图:
在这里插入图片描述
此外还有一个参数:

vim $DRUID_HOME/conf/druid/cluster/data/historical/runtime.properties

原配置内容如下:

druid.processing.buffer.sizeBytes=500MiB

修改为如下内容:

# 相当于 50MiB
druid.processing.buffer.sizeBytes=50000000

修改的截图如下:
在这里插入图片描述
备注:

  • druid.processing.buffer.sizeBytes 每个查询用于聚合的对外哈希表的大小
  • maxDirectMemory = druid.processing.buffer.sizeBytes * (durid.processing.numMergeBuffers + druid.processing.numThreads + 1)
  • 如果 druid.processing.buffer.sizeBytes太大的话,需要加大 maxDirectMemory,否则 historical服务无法启动

broker

vim $DRUID_HOME/conf/druid/cluster/query/broker/jvm.config

原配置如下:

-server
-Xms12g
-Xmx12g
-XX:MaxDirectMemorySize=6g
-XX:+ExitOnOutOfMemoryError
-Duser.timezone=UTC
-Dfile.encoding=UTF-8
-Djava.io.tmpdir=var/tmp
-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager

修改配置如下:

-server
-Xms512m
-Xmx512m
-XX:MaxDirectMemorySize=512m
-XX:+ExitOnOutOfMemoryError
-Duser.timezone=UTC+8
-Dfile.encoding=UTF-8
-Djava.io.tmpdir=var/tmp
-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager

修改截图如下图:
在这里插入图片描述

此外还需要修改额外的参数:

vim $DRUID_HOME/conf/druid/cluster/query/broker/runtime.properties

原参数为:

druid.processing.buffer.sizeBytes=500MiB

修改为:

# 与刚才修改的一样 大约是50MiB
druid.processing.buffer.sizeBytes=50000000

修改截图如下所示:
在这里插入图片描述
备注:

  • druid.processing.buffer.sizeBytes 每个查询用于聚合的堆外哈希表的大小
  • maxDirectMemory = druid.processing.buffer.sizeBytes*(druid.processing.numMergeBuffers + druid.processing.numThreads + 1)
  • 如果 druid.processing.buffer.sizeBytes 太大,那么需要加大maxDirectMemory,否则 broker 服务无法启动

router

vim $DRUID_HOME/conf/druid/cluster/query/router/jvm.config

原配置如下:

-server
-Xms1g
-Xmx1g
-XX:+UseG1GC
-XX:MaxDirectMemorySize=128m
-XX:+ExitOnOutOfMemoryError
-Duser.timezone=UTC
-Dfile.encoding=UTF-8
-Djava.io.tmpdir=var/tmp
-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager

修改配置如下:

-server
-Xms128m
-Xmx128m
-XX:+UseG1GC
-XX:MaxDirectMemorySize=128m
-XX:+ExitOnOutOfMemoryError
-Duser.timezone=UTC+8
-Dfile.encoding=UTF-8
-Djava.io.tmpdir=var/tmp
-Djava.util.logging.manager=org.apache.logging.log4j.jul.LogManager

修改截图如下:
在这里插入图片描述

配置汇总

  • coordinator-overlord:512M
  • historical:512M,堆外1G
  • middleManger:128M
  • broker:512M、堆外512M
  • router:128M,堆外128M

分发软件

你可以用的方式完成,我这里用之前写好的 rsync-script 工具进行分发,刚才我们配置都是在 h121 节点上完成的,所以接下来,我们从 h121 节点分发到 h122、h123

rsync-script apache-druid-30.0.0

运行结果如下图所示:

在这里插入图片描述
分发之后,要注意你需要修改的东西:

  • common.runtime.properties中的 druid.host 为所在节点的IP
  • h121 h122 h123 上都配置好环境、环境变量等内容

启动服务

ZK启动

在三台节点上都需要启动ZK,并且需要组成ZK集群。
这部分内容之前已经有 ZooKeeper集群环境搭建,且在多个环节中,如Kafka集群环节中已经测试过。

zkServer.sh start

启动 Hadoop

start-all.sh
# 或者只启动 dfs也行
start-dfs.sh

执行结果如下图所示:
在这里插入图片描述

Druid启动

h121 查询节点

这里是查询节点

cd /opt/servers/apache-druid-30.0.0
nohup start-cluster-query-server &

运行结果如下图所示:
在这里插入图片描述

h122 数据节点

这里是数据节点

cd /opt/servers/apache-druid-30.0.0
nohup start-cluster-data-server &

运行结果如下图所示:
在这里插入图片描述

h123 主节点

这里是主节点

cd /opt/servers/apache-druid-30.0.0
nohup start-cluster-master-no-zk-server &

运行结果如下所示:
在这里插入图片描述

日志查看

可以在log下查看,我这里是查看了 nohup 的内容

h121

在这里插入图片描述

h122

在这里插入图片描述

h123

在这里插入图片描述

停止服务

需要在每个节点都执行:

# 在各个节点运行
/opt/servers/apache-druid-30.0.0/bin/service --down

查看界面

http://h121.wzk.icu:8888

页面结果如下:
在这里插入图片描述
在这里插入图片描述
到此!顺利完成!一路艰难险阻!

http://www.lryc.cn/news/450663.html

相关文章:

  • IDE 使用技巧与插件推荐全面指南
  • java-快速将普通main类变为javafx类,并加载自定义fxml
  • 数据结构之——单循环链表和双向循环链表
  • Git Stash: 管理临时更改的利器
  • ELK--收集日志demo
  • Redis的主要特点及运用场景
  • 与我免费ai书童拆解《坚持》创作历程
  • 昇思MindSpore进阶教程--下沉模式
  • Hive SQL业务场景:连续5天涨幅超过5%股票
  • Java 如何从图片上提取文字
  • C#进阶-读写Excel常用框架及其使用方式
  • Python爬虫lxml模块安装导入和xpath基本语法
  • python魔法(python高级magic方法进阶)
  • 【论文笔记】Flamingo: a Visual Language Model for Few-Shot Learning
  • 问:JAVA阻塞队列实现类及最佳实践?
  • Springboot3 + MyBatis-Plus + MySql + Vue + ProTable + TS 实现后台管理商品分类(最新教程附源码)
  • 消费电子制造企业如何使用SAP系统提升运营效率与竞争力
  • 算法记录——树
  • 单片机在控制和自动化任务中的应用场景广泛
  • UEFI EDK2框架学习(三)——protocol
  • PostgreSQL的字段存储类型了解
  • CTFshow 命令执行 web29~web36(正则匹配绕过)
  • 【顺序表使用练习】发牌游戏
  • 1.7 编码与调制
  • 004集—— txt格式坐标写入cad(CAD—C#二次开发入门)
  • CSS中的font-variation-settings:探索字体的可变性
  • 组合优化与凸优化 学习笔记5 对偶拉格朗日函数
  • 监控易监测对象及指标之:Exchange邮件服务器监测
  • 【机器学习基础】Transformer学习
  • mysql如何不使用窗口函数,去统计出入库情况