当前位置: 首页 > news >正文

OpenCV特征检测(9)检测图像中直线的函数HoughLines()的使用

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

在二值图像中使用标准 Hough 变换查找直线。

该函数实现了用于直线检测的标准 Hough 变换或标准多尺度 Hough 变换算法。详见 http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm 对 Hough 变换的详细解释。

HoughLines 是 OpenCV 中用于检测图像中直线的一个函数。它利用 Hough 变换来识别图像中的直线。Hough 变换是一种将图像中的直线问题转化为参数空间中的点积累问题的技术。通过这种方式,即使直线片段在原始图像中是断断续续的,也可以检测出来。

函数原型


void cv::HoughLines	
(InputArray 	image,OutputArray 	lines,double 	rho,double 	theta,int 	threshold,double 	srn = 0,double 	stn = 0,double 	min_theta = 0,double 	max_theta = CV_PI 
)		

参数

  • 参数image: 8 位单通道二值源图像。该图像可能在函数执行过程中被修改。

  • 参数lines: 输出的直线向量。每条直线由一个包含 2 或 3 个元素的向量表示(ρ, θ)或(ρ, θ, votes),其中 ρ 是从坐标原点(0,0)(图像的左上角)到直线的距离,θ 是直线旋转角度(以弧度为单位,0~垂直线,π/2~水平线),votes 是累加器的值。

  • 参数rho: 累加器的距离分辨率(以像素为单位)。

  • 参数theta: 累加器的角度分辨率(以弧度为单位)。

  • 参数threshold: 累加器的阈值参数。只有那些获得足够投票数(>threshold)的直线才会被返回。

  • 参数srn: 对于多尺度 Hough 变换,它是距离分辨率 ρ 的除数。粗略累加器的距离分辨率为 ρ,而精确累加器的分辨率为 ρ/srn。如果 srn=0 和 stn=0,将使用经典 Hough 变换。否则,这两个参数都应该为正数。

  • 参数stn: 对于多尺度 Hough 变换,它是角度分辨率 θ 的除数。

  • 参数min_theta: 对于标准 Hough 变换和多尺度 Hough 变换,检查直线的最小角度。必须介于 0 和 max_theta 之间。

  • 参数max_theta: 对于标准 Hough 变换和多尺度 Hough 变换,角度的上限。必须介于 min_theta 和 CV_PI 之间。累加器中的实际最大角度可能稍微小于 max_theta,具体取决于 min_theta 和 theta 参数。

代码示例


#include "opencv2/highgui.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
using namespace cv;
using namespace std;
int main( int argc, char** argv )
{// Declare the output variablesMat dst, cdst, cdstP;const char* default_file = "sudoku.png";// Loads an imageMat src = imread( "/media/dingxin/data/study/OpenCV/sources/images/line.jpg", IMREAD_GRAYSCALE );// Check if image is loaded fineif ( src.empty() ){printf( " Error opening image\n" );printf( " Program Arguments: [image_name -- default %s] \n", default_file );return -1;}// Edge detectionCanny( src, dst, 50, 200, 3 );// Copy edges to the images that will display the results in BGRcvtColor( dst, cdst, COLOR_GRAY2BGR );cdstP = cdst.clone();// Standard Hough Line Transformvector< Vec2f > lines;                                // will hold the results of the detectionHoughLines( dst, lines, 1, CV_PI / 180, 150, 0, 0 );  // runs the actual detection// Draw the linesfor ( size_t i = 0; i < lines.size(); i++ ){float rho = lines[ i ][ 0 ], theta = lines[ i ][ 1 ];Point pt1, pt2;double a = cos( theta ), b = sin( theta );double x0 = a * rho, y0 = b * rho;pt1.x = cvRound( x0 + 1000 * ( -b ) );pt1.y = cvRound( y0 + 1000 * ( a ) );pt2.x = cvRound( x0 - 1000 * ( -b ) );pt2.y = cvRound( y0 - 1000 * ( a ) );line( cdst, pt1, pt2, Scalar( 0, 0, 255 ), 3, LINE_AA );}// Show resultsimshow( "Source", src );imshow( "Detected Lines (in red) - Standard Hough Line Transform", cdst );// Wait and ExitwaitKey();return 0;
}

运行结果

在这里插入图片描述
从结果图上看,这个函数的效果并不是很理想。也许能通过调参能更好一些

http://www.lryc.cn/news/446636.html

相关文章:

  • 力扣 中等 445.两数相加 II
  • 华为云徐峰:AI赋能应用现代化,加速软件生产力跃升
  • C发送邮件技巧:如何批量发送个性化邮件?
  • 基于python+spark的外卖餐饮数据分析系统设计与实现(含论文)-Spark毕业设计选题推荐
  • 权限维持——Linux
  • 申请SSL证书闭坑方法
  • linux 下域名解析错误
  • 基于单片机的角度、水位、温度、辅助热源、电机仿真
  • 泛函分析精解【1】
  • 大数据毕业设计选题推荐-租房数据分析系统-Hive-Hadoop-Spark
  • 有关shell指令练习2
  • Exception与Error:Java中的异常处理
  • HashMap哈希表练习
  • 字节豆包C++一面-面经总结
  • 极狐GitLab 17.4 重点功能解读【三】
  • 【unity进阶知识4】封装unity协程工具,避免 GC(垃圾回收)
  • Source insight安装使用笔记
  • golang学习笔记29——golang 中如何将 GitHub 最新提交的版本设置为 v1.0.0
  • Netty源码解析-锁机制
  • 【C/C++】initializer_list
  • 不要再混淆啦!一文带你学会原型链继承、构造函数继承、寄生组合继承、ES6继承
  • 828华为云征文|华为云Flexus X实例Windows Server 2019安装护卫神防火墙——为企业运维安全发挥重要作用!!!
  • 最新的iOS 18版本和Android 15版本系统分别升级了哪些功能?
  • window系统DockerDesktop 部署windows容器
  • CSDN文章导出md并迁移至博客园
  • 计算机组成原理(笔记5原码和补码的乘法以及直接补码阵列乘法器 )
  • 【hot100-java】【括号生成】
  • k8s_资源管理介绍
  • 操作简单 地检编码器 武汉正向科技售后优质
  • 2024中国新能源汽车零部件交易会,开源网安展示了什么?