当前位置: 首页 > news >正文

输电线塔目标检测数据集yolo格式该数据集包括2644张输电线塔高清图像,该数据集已经过yolo格式标注,具有完整的txt标注文件和yaml配置文件。

输电线塔目标检测数据集yolo格式


该数据集包括2644张输电线塔高清图像,该数据集已经过yolo格式标注,具有完整的txt标注文件和yaml配置文件。

输电线塔目标检测数据集

数据集名称

输电线塔目标检测数据集(Transmission Tower Object Detection Dataset)

数据集概述

该数据集专为输电线塔的目标检测任务设计,旨在帮助电力部门和相关研究机构通过图像识别技术自动检测输电线塔及其组件。数据集包含2644张高清图像,并且每张图像都经过YOLO格式的详细标注。这些图像展示了各种环境下的输电线塔,包括不同的天气条件、光照情况和背景干扰。数据集已经提供了完整的txt标注文件和yaml配置文件,可以直接用于基于YOLO的目标检测模型训练。

数据集特点
  • 高质量图像:所有图像均为高分辨率,能够清晰地显示输电线塔及其组件的细节。
  • 详细标注:每张图像都附有精确的边界框以及类别标签,便于训练目标检测模型。
  • 标准化格式:图像采用JPG或PNG格式存储,标签则按照YOLO格式组织,方便与主流框架结合使用。
  • 多样化场景:图像来自不同的地理位置和环境条件,增强了模型的泛化能力。
  • 数据增强:虽然未明确提及,但通常可以通过数据增强技术进一步增加样本多样性。
  • 完整配置:提供了完整的data.yaml配置文件,描述了数据集路径和类别信息。
  • 高精度模型:可以用来训练高精度的目标检测模型,适用于实际应用中的输电线塔检测任务。
数据集构成

  • 图像数量:2644张高清图像
  • 图像格式:JPG或PNG
  • 标签数量:对应每张图像各有一个YOLO格式的文本文件
  • 类别数:具体类别数未指明,但通常包括输电线塔及其主要组件,如塔身、绝缘子、导线等。
  • 数据集划分
    • 训练集
    • 验证集
    • 测试集
  • 配置文件:包含完整的data.yaml配置文件,描述了数据集路径和类别信息。
数据集用途

  • 输电线塔检测:主要用于开发高效准确的目标检测算法,识别并定位输电线塔及其组件。
  • 电力巡检:帮助电力部门进行自动化巡检,提高巡检效率和准确性。
  • 故障诊断:辅助电力部门及时发现输电线塔的潜在问题,预防事故发生。
  • 性能评估:作为基准数据集,可以用来比较不同算法或模型之间的性能差异。
  • 研究与开发:支持学术界和工业界的研究人员探索新的计算机视觉技术和方法。
  • 教育与培训:适合作为教材内容,帮助学生理解实际应用场景下的机器学习问题解决流程。
示例代码

以下是一个简单的Python脚本示例,用于加载数据集中的一对图像-标签对,并可视化其中的标注信息:

import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle# 数据集目录路径
data_dir = 'path/to/transmission_tower_dataset'
train_image_dir = os.path.join(data_dir, 'images/train')
train_label_dir = os.path.join(data_dir, 'labels/train')# 选取一张训练图像及其对应标签
image_files = os.listdir(train_image_dir)
image_file = image_files[0]  # 假设取第一张图
label_file = os.path.splitext(image_file)[0] + '.txt'image_path = os.path.join(train_image_dir, image_file)
label_path = os.path.join(train_label_dir, label_file)# 加载图像
image = cv2.imread(image_path, cv2.IMREAD_COLOR)
height, width, _ = image.shape# 解析YOLO格式标签
with open(label_path, 'r') as f:lines = f.readlines()bboxes = []for line in lines:class_id, x_center, y_center, box_width, box_height = map(float, line.strip().split())x_min = int((x_center - box_width / 2) * width)y_min = int((y_center - box_height / 2) * height)box_width = int(box_width * width)box_height = int(box_height * height)bboxes.append((class_id, x_min, y_min, box_width, box_height))# 可视化标注
fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
colors = ['red', 'green', 'blue', 'yellow', 'cyan', 'magenta']  # 分别代表不同颜色
names = ['tower', 'insulator', 'conductor', 'other'  # 假设的类别名称,具体根据实际情况调整
]for bbox in bboxes:class_id, x, y, w, h = bboxrect = Rectangle((x, y), w, h, linewidth=2, edgecolor=colors[int(class_id) % len(colors)], facecolor='none')ax.add_patch(rect)ax.text(x, y - 10, names[int(class_id)], color=colors[int(class_id) % len(colors)], fontsize=8)plt.title('Transmission Tower Detection')
plt.axis('off')
plt.show()
数据集结构示例
├── transmission_tower_dataset
│   ├── images
│   │   ├── train
│   │   │   ├── 00000.jpg
│   │   │   ├── 00001.jpg
│   │   │   └── ...
│   │   ├── validation
│   │   │   ├── 00000.jpg
│   │   │   ├── 00001.jpg
│   │   │   └── ...
│   │   └── test
│   │       ├── 00000.jpg
│   │       ├── 00001.jpg
│   │       └── ...
│   ├── labels
│   │   ├── train
│   │   │   ├── 00000.txt
│   │   │   ├── 00001.txt
│   │   │   └── ...
│   │   ├── validation
│   │   │   ├── 00000.txt
│   │   │   ├── 00001.txt
│   │   │   └── ...
│   │   └── test
│   │       ├── 00000.txt
│   │       ├── 00001.txt
│   │       └── ...
│   └── data.yaml  # 包含数据集的基本信息如类别数及类别名
数据集使用指南
  1. 数据准备:确认数据集路径是否正确,并且图像和标签文件均存在指定的目录下。
  2. 数据划分:数据集已经划分为训练集、验证集和测试集,可以直接使用。
  3. 配置文件:根据所使用的深度学习框架创建相应的配置文件,比如YOLOv5需要一个data.yaml文件来描述数据集路径和类别信息。
  4. 模型训练:利用选定的深度学习框架开始训练目标检测模型。注意要合理设置超参数以优化训练效果。
  5. 结果分析:完成训练后,对模型预测结果进行详细分析,必要时调整模型架构或训练策略以进一步提高准确性。

http://www.lryc.cn/news/444833.html

相关文章:

  • MySQL之基本查询(二)(update || delete || 聚合函数 || group by)
  • 全栈开发(五):初始化前端项目(nuxt3+vue3+element-plus)+前端代理
  • Linux环境变量进程地址空间
  • C++读取txt文件中的句子在终端显示,同时操控鼠标滚轮(涉及:多线程,产生随机数,文件操作等)
  • Android 中使用高德地图实现根据经纬度信息画出轨迹、设置缩放倍数并定位到轨迹路线的方法
  • LeetCode从入门到超凡(二)递归与分治算法
  • superset 解决在 mac 电脑上发送 slack 通知的问题
  • SQL_UNION
  • 高等代数笔记(2)————(弱/强)数学归纳法
  • 模拟自然的本质:与IBM量子计算研究的问答
  • Robot Operating System——带有时间戳和坐标系信息的多边形信息
  • 内网穿透(当使用支付宝沙箱的时候需要内网穿透进行回调)
  • Contact Form 7最新5.9.8版错误修复方案
  • 【第十一章:Sentosa_DSML社区版-机器学习之分类】
  • kafka3.8的基本操作
  • 如何检测并阻止机器人活动
  • 《linux系统》基础操作
  • EMT-LTR--学习任务间关系的多目标多任务优化
  • MySQL record 08 part
  • 打造以太坊数据监控利器:InfluxDB与Grafana构建Geth可视化分析平台
  • 对onlyoffice进行定制化开发
  • 使用llama.cpp 在推理MiniCPM-1.2B模型
  • 分布式环境中,接口超时重试带来的的幂等问题如何解决?
  • 设计一个推荐系统:使用协同过滤算法
  • Linux 基本指令(二)
  • Facebook的用户隐私保护:从争议到革新
  • 计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-23
  • C++(学习)2024.9.20
  • 让AI激发创作力:OpenAI分享5位专业作家利用ChatGPT写作的案例技巧
  • UEFI EDK2框架学习 (一)