当前位置: 首页 > news >正文

深度学习之图像数据集增强(Data Augmentation)

文章目录

    • 一、 数据增强概述
    • 二、python实现传统数据增强
    • 参考文献

一、 数据增强概述

数据增强(Data Augmentation)是一种技术,通过对现有数据进行各种变换和处理来生成新的训练样本,从而增加数据集的多样性和数量。这些变换可以是几何变换、颜色变换、噪声添加等,使模型在训练过程中能够见到更多种类的数据,从而提升模型的泛化能力和鲁棒性。
在机器学习和深度学习中,数据的数量和质量对模型的性能至关重要。然而,获取大量标注数据通常既耗时又昂贵。数据增强通过对现有数据进行多种处理,模拟出更多样化 的训练样本,有效解决了数据稀缺的问题。这样不仅能防止模型过拟合(即模型在训练数据上表现很好,但在测试数据上表现不佳),还能够提升模型在不同情况下的表现,使其具有更强的泛化能力。
数据增强的方法多种多样,如下图所示:
在这里插入图片描述

这些方法各有优劣,可以根据具体任务和数据特点灵活选择和组合使用,以达到最佳的数据增强效果。通过数据增强,模型能够在有限的数据基础上获得更多的训练样本,提高训练效率和效果,最终在实际应用中表现得更加稳健和可靠。其中,传统数据增强方法比较常用且实现简单,因此本文主要实现传统数据增强的方法,其他数据增强方法后续有空再进行尝试。

二、python实现传统数据增强

import os
import random
from PIL import Image, ImageEnhance, ImageOps, ImageFilter# 翻转图像
def flip_image(image, mode='horizontal'):if mode == 'horizontal':return image.transpose(Image.FLIP_LEFT_RIGHT)elif mode == 'vertical':return image.transpose(Image.FLIP_TOP_BOTTOM)else:raise ValueError("Mode should be 'horizontal' or 'vertical'")# 旋转图像
def rotate_image(image, angle):return image.rotate(angle)# 缩放图像
def scale_image(image, scale_factor):width, height = image.sizereturn image.resize((int(width * scale_factor), int(height * scale_factor)))# 图像平移
def move(img): #平移,平移尺度为offoffset = ImageChops.offset(img, np.random.randint(1, 20), np.random.randint(1, 40))return offset# 裁剪图像
def crop_image(image, crop_box):return image.crop(crop_box)# 调整亮度、对比度、饱和度、色调
def adjust_color(image, brightness=1, contrast=1, saturation=1, hue=1):enhancer = ImageEnhance.Brightness(image)image = enhancer.enhance(brightness)enhancer = ImageEnhance.Contrast(image)image = enhancer.enhance(contrast)enhancer = ImageEnhance.Color(image)image = enhancer.enhance(saturation)# hue adjustment not directly available in PIL, skippedreturn image# 添加噪声
def add_noise(image, noise_type='gaussian', mean=0, std=1):# This function is a placeholder; PIL doesn't support direct noise additionreturn image# 模糊图像
def blur_image(image, blur_type='gaussian', radius=2):if blur_type == 'gaussian':return image.filter(ImageFilter.GaussianBlur(radius))elif blur_type == 'motion':return image.filter(ImageFilter.MotionBlur(radius))  # Pillow doesn't have MotionBlur, custom implementation neededelse:raise ValueError("Blur type should be 'gaussian' or 'motion'")# 仿射变换
def affine_transform(image, matrix):return image.transform(image.size, Image.AFFINE, matrix)def test():input_image_path = 'skadi.jpg'  # 输入图像路径output_folder = 'output_path'  # 输出文件夹if not os.path.exists(output_folder):os.makedirs(output_folder)image = Image.open(input_image_path)# 设置增强方法及其参数methods = [('flip', {'mode': 'horizontal'}),('rotate', {'angle': 45}),('scale', {'scale_factor': 1.5}),('translate', {'x': 10, 'y': 20}),('crop', {'crop_box': (10, 10, 200, 200)}),('adjust_color', {'brightness': 1.2, 'contrast': 1.5, 'saturation': 1.3}),('add_noise', {'noise_type': 'gaussian', 'mean': 0, 'std': 1}),('blur', {'blur_type': 'gaussian', 'radius': 2}),('affine', {'matrix': (1, 0.2, 0, 0.2, 1, 0)})]# 应用选择的增强方法for method_name, params in methods:if method_name == 'flip':result_image = flip_image(image, **params)elif method_name == 'rotate':result_image = rotate_image(image, **params)elif method_name == 'scale':result_image = scale_image(image, **params)elif method_name == 'translate':result_image = translate_image(image, **params)elif method_name == 'crop':result_image = crop_image(image, **params)elif method_name == 'adjust_color':result_image = adjust_color(image, **params)elif method_name == 'add_noise':result_image = add_noise(image, **params)elif method_name == 'blur':result_image = blur_image(image, **params)elif method_name == 'affine':result_image = affine_transform(image, **params)else:continueoutput_image_path = os.path.join(output_folder, f"{method_name}_output.jpg")result_image.save(output_image_path)if __name__ == '__main__':test()

例子:对图像进行随机翻转

def pair_flip_image(img, label):p = 0.5if np.random.random() < p:return flip_image(img), flip_image(label)return img, labeldef data_expand():image_dir = r"D:\test"image_list = os.listdir(os.path.join(image_dir, 'image'))expand_time = 10for idx in range(len(image_list)):if image_list[idx].endswith(('.png', '.jpg', '.tif')):print(image_list[idx])image = Image.open(os.path.join(image_dir, 'image', image_list[idx]))label = Image.open(os.path.join(image_dir, 'label', image_list[idx]))for k in range(expand_time):image, label = pair_flip_image(image, label)image.save("image.png")label.save("label.png")    if __name__ == '__main__':data_expand()

参考文献

[1] 数据增强基本介绍和常用的数据增强方法
[2] 使用python及PIL库对图像分类数据图片进行数据增强扩充

http://www.lryc.cn/news/443018.html

相关文章:

  • 小程序与APP的区别
  • Linux Kernel Makefiles 编译标志详解
  • 数据可视化pyecharts——数据分析(柱状图、折线图、饼图)
  • 小程序构建npm失败
  • 计算机人工智能前沿进展-大语言模型方向-2024-09-20
  • cv环境设置
  • 线性代数书中求解线性方程组的三种方法的实例
  • Linux容器化管理——Docker常见命令总结
  • 智慧校园建设解决方案建设系统简介
  • 用Python打造互动式中秋节庆祝小程序
  • Linux 生成 git ssh 公钥
  • CertiK因发现Apple Vision Pro眼动追踪技术漏洞,第6次获苹果认可
  • 自动登录 RPA 的进阶:滑块验证的巧妙实现
  • Flask-WTF的使用
  • Docker 进入容器并运行命令的方法
  • 2024“华为杯”中国研究生数学建模竞赛(E题)深度剖析_数学建模完整过程+详细思路+代码全解析
  • 伊犁云计算22-1 apache 安装rhel8
  • 概率论原理精解【13】
  • 年度巨献 | OpenCSG开源最大中文合成数据集Chinese Cosmopedia
  • Mac 上,终端如何开启 proxy
  • Linux中的进程入门
  • Redis面试真题总结(三)
  • ARM/Linux嵌入式面经(三三):大疆
  • 《DevOps实践指南》笔记-Part 2
  • 树莓派智能语音助手实现音乐播放
  • 【sgCreateCallAPIFunctionParam】自定义小工具:敏捷开发→调用接口方法参数生成工具
  • 完整版:NacosDocker 安装
  • mysql RR是否会导致幻读?
  • 一篇进阶Python深入理解函数之高阶函数与函数式编程
  • python中Web开发框架的使用