当前位置: 首页 > news >正文

算法刷题:300. 最长递增子序列、674. 最长连续递增序列、718. 最长重复子数组、1143. 最长公共子序列

300. 最长递增子序列

1.dp定义:dp[i]表示i之前包括i的以nums[i]结尾的最长递增子序列的长度

2.递推公式:if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);

注意这里不是要dp[i] 与 dp[j] + 1进行比较,而是我们要取dp[j] + 1的最大值

 3.初始化:每一个i,对应的dp[i](即最长递增子序列)起始大小至少都是1.

class Solution {
public:int lengthOfLIS(vector<int>& nums) {if (nums.size() <= 1) return nums.size();vector<int> dp(nums.size(), 1);int result = 0;for (int i = 1; i < nums.size(); i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) dp[i] = max(dp[i], dp[j] + 1);}if (dp[i] > result) result = dp[i]; // 取长的子序列}return result;}
};

674. 最长连续递增序列

1.dp定义:dp[i]:以下标i为结尾的连续递增的子序列长度为dp[i]

2.递推公式:如果 nums[i] > nums[i - 1],那么以 i 为结尾的连续递增的子序列长度 一定等于 以i - 1为结尾的连续递增的子序列长度 + 1 。

即:dp[i] = dp[i - 1] + 1;

因为本题要求连续递增子序列,所以就只要比较nums[i]与nums[i - 1],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。

 3.dp[i]应该初始1;        

class Solution {
public:int findLengthOfLCIS(vector<int>& nums) {if (nums.size() == 0) return 0;int result = 1;vector<int> dp(nums.size() ,1);for (int i = 1; i < nums.size(); i++) {if (nums[i] > nums[i - 1]) { // 连续记录dp[i] = dp[i - 1] + 1;}if (dp[i] > result) result = dp[i];}return result;}
};

718. 最长重复子数组

1.dp定义:以下标i - 1为结尾的A,和以下标j - 1为结尾的B,最长重复子数组长度为dp[i][j]。

2.递推公式:当A[i - 1] 和B[j - 1]相等的时候,dp[i][j] = dp[i - 1][j - 1] + 1;

根据递推公式可以看出,遍历i 和 j 要从1开始!

3.初始化:根据dp[i][j]的定义,dp[i][0] 和dp[0][j]其实都是没有意义的!

但dp[i][0] 和dp[0][j]要初始值,因为 为了方便递归公式dp[i][j] = dp[i - 1][j - 1] + 1;

所以dp[i][0] 和dp[0][j]初始化为0。

举个例子A[0]如果和B[0]相同的话,dp[1][1] = dp[0][0] + 1,只有dp[0][0]初始为0,正好符合递推公式逐步累加起来。

注:如果dp数组以i,j为结尾,那么初始化时,应该为dp[i] = dp[j]时初始化为1

class Solution {
public:int findLength(vector<int>& nums1, vector<int>& nums2) {vector<vector<int>> dp (nums1.size() + 1, vector<int>(nums2.size() + 1, 0));int result = 0;for (int i = 1; i <= nums1.size(); i++) {for (int j = 1; j <= nums2.size(); j++) {if (nums1[i - 1] == nums2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;}if (dp[i][j] > result) result = dp[i][j];}}return result;}
};

1143. 最长公共子序列

和上一题的区别是不要求是连续的了,但要有相对顺序

1.dp含义:dp[i][j]:长度为[0, i - 1]的字符串text1与长度为[0, j - 1]的字符串text2的最长公共子序列为dp[i][j]

2.递推公式:如果text1[i - 1] 与 text2[j - 1]相同,那么找到了一个公共元素,所以dp[i][j] = dp[i - 1][j - 1] + 1;

如果text1[i - 1] 与 text2[j - 1]不相同,那就看看text1[0, i - 2]与text2[0, j - 1]的最长公共子序列 和 text1[0, i - 1]与text2[0, j - 2]的最长公共子序列,取最大的。

即:dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);

class Solution {
public:int longestCommonSubsequence(string text1, string text2) {vector<vector<int>> dp(text1.size() + 1, vector<int>(text2.size() + 1, 0));for (int i = 1; i <= text1.size(); i++) {for (int j = 1; j <= text2.size(); j++) {if (text1[i - 1] == text2[j - 1]) {dp[i][j] = dp[i - 1][j - 1] + 1;} else {dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]);}}}return dp[text1.size()][text2.size()];}
};

http://www.lryc.cn/news/438633.html

相关文章:

  • go 笔记
  • 路由等保测评
  • C# 反射之动态生成dll/exe
  • Rust 所有权 Slices
  • windows 安全与网络管理问题
  • 基于Python实现一个庆祝国庆节的小程序
  • Anaconda 安装与使用教程
  • 时序预测SARIMAX模型
  • gin集成jaeger中间件实现链路追踪
  • 前端层面----监控与埋点
  • linux Command
  • uniapp登录页面( 适配:pc、小程序、h5)
  • 关于OceanBase 多模一体化的浅析
  • 快速git
  • 欺诈文本分类检测(十四):GPTQ量化模型
  • 2024.9.14(RC和RS)
  • 【算法随想录04】KMP 字符串匹配算法
  • TCP和MQTT通信协议
  • Python Pickle 与 JSON 序列化详解:存储、反序列化与对比
  • 第二百三十二节 JPA教程 - JPA教程 - JPA ID自动生成器示例、JPA ID生成策略示例
  • 计算机网络 ---- 计算机网络的体系结构【计算机网络的分层结构】
  • Vite + Electron 时,Electron 渲染空白,静态资源加载错误等问题解决
  • ZAB协议(算法)
  • 多个音频怎么合并?把多个音频合并在一起的方法推荐
  • 【Django】Django Class-Based Views (CBV) 与 DRF APIView 的区别解析
  • 如何增加Google收录量?
  • leetcode练习 格雷编码
  • 【LLM:Gemini】文本摘要、信息提取、验证和纠错、重新排列图表、视频理解、图像理解、模态组合
  • CMS之Wordpress建设
  • 使用Neo4j存储聊天记录的简单教程