当前位置: 首页 > news >正文

数据结构——二叉搜索树

一、二叉搜索树概念

二叉搜索树又叫二叉排序树,它或是空树,或是具有以下性质的二叉树:

(1)若它的左子树不为空,则左子树上的所有节点的值都小于根节点的值;

(2)若它的右子树不为空,则右子树上的所有节点的值都大于根节点的值;

(3)它的左右子树也分别为二叉搜索树。

二、二叉搜索树操作

1.二叉搜索树的查找

(1)若根节点为空,则直接返回false,否则进行后续操作;

(2)如果根节点key==查找key,返回ture,否则进行后续操作;

(3)若根节点key>查找key,则在其左子树内进行查找,否则在其右子树内进行查找;

(4)递归上述过程。

2.二叉搜索树的插入

(1)若树为空,则直接插入;

(2)若树不为空,则按二叉搜索树性质查找插入位置,然后插入。

3.二叉搜索树的删除

        首先查找待删除元素是否在二叉搜索树中,没有则直接返回,否则要删除的节点可分为以下四种情况:

(1)待删除节点无孩子节点;

(2)待删除节点只有左孩子;

(3)待删除节点只有右孩子;

(4)待删除节点左右孩子都有。

删除方法:

情况(1):删除方法与情况(2)和(3)相同;

情况(2):删除该节点,并使被删除节点的双亲节点指向被删除节点的左孩子节点;

情况(3):删除该节点,并使被删除节点的双亲节点指向被删除节点的右孩子;

情况(4):在它的右子树中寻找中序下的第一个节点(值最小的节点),用它的值覆盖掉被删除节点,在处理该节点的删除问题。或找它左子树中最大的节点。

三、二叉搜索的实现

1.代码实现

template<class T>
struct BSTNode {BSTNode(const T& value = T()): _left(nullptr), _right(nullptr), _value(value){}BSTNode<T>* _left;BSTNode<T>* _right;T _value;
};//约定value唯一
template<class T>
class BinarySearchTree {typedef BSTNode<T> Node;
public:BinarySearchTree(): _root(nullptr){}~BinarySearchTree() {Destroy(_root);}//插入bool Insert(const T& value) {//空树if (_root == nullptr) {_root = new Node(value);return true;}//非空Node* cur = _root;Node* parent = nullptr;//保存cur双亲节点//查找插入位置while (cur) {parent = cur;if (value < cur->_value) {cur = cur->_left;}else if (value > cur->_value) {cur = cur->_right;}else {//待插入节点已存在return false;}}//插入新节点cur = new Node(value);if (value > parent->_value) {parent->_right = cur;}else {parent->_left = cur;}return true;}//查找Node* Find(const T& value) {Node* cur = _root;while (cur) {if (value == cur->_value) {return cur;}else if (value < cur->_value) {cur = cur->_left;}else {cur = cur->_right;}}return cur;}//删除bool Erase(const T& value) {if (_root == nullptr) return false;Node* cur = _root;Node* parent = nullptr;//查找待删除节点while (cur) {//parent = cur;不能在这里记录双亲节点,因为有可能cur已经是待删除节点,会直接breakif (value == cur->_value) {break;}else if (value < cur->_value) {parent = cur;cur = cur->_left;}else {parent = cur;cur = cur->_right;}}if (cur == nullptr) return false;//没有待删除节点//删除节点if (cur->_left == nullptr) {//情况1和2if (parent == nullptr) {//是根节点且左孩子为空_root = cur->_right;}else {//不是根节点if (cur == parent->_left) parent->_left = cur->_right;else parent->_right = cur->_right;}delete cur;}else if (cur->_right == nullptr) {//情况1和3if (parent == nullptr) {//是根节点且右孩子为空_root = cur->_left;}else {//不是根节点if (cur == parent->_left) parent->_left = cur->_left;else parent->_right = cur->_left;}delete cur;}else {//情况4//查找该节点右子树最小值(或左子树的最大值)Node* prev = cur;Node* node = cur->_right;while (node->_left) {prev = node;node = node->_left;}//覆盖节点值cur->_value = node->_value;//删除节点,该节点的左孩子肯定为空if (node == prev->_left) prev->_left = node->_right;else prev->_right = node->_right;delete node;}return true;}//中序遍历void InOrder() {_InOrder(_root);std::cout << std::endl;}private://中序遍历void _InOrder(Node* root) {if (root == nullptr) return;_InOrder(root->_left);std::cout << root->_value << " ";_InOrder(root->_right);}//销毁void Destroy(Node*& root) {//利用后续遍历销毁if (root == nullptr) return;Destroy(root->_left);Destroy(root->_right);delete root;root = nullptr;}private:Node* _root;
};

2.性能分析

        二叉搜索树的插入、删除操作都必须先进行查找,查找效率代表了二叉搜索树的各个操作的性能。而二叉树的结构,取决于给定的序列:

(1)最优情况下:二叉搜索树为完全二叉树,其平均比较次数为log_{2}^{N}

(2)最坏情况下:二叉搜索树退化为单支树,其平均比较次数为N/2;

所以二叉搜索树的查找、插入、删除时间复杂度都是O(N)。

http://www.lryc.cn/news/43826.html

相关文章:

  • 23年5月高项学习笔记3---项目管理概述
  • 【组织架构】中国铁路成都局集团有限公司
  • 剧前爆米花--爪哇岛寻宝】java多线程案例——单例模式、阻塞队列及生产者消费者模型、定时器、线程池
  • Guitar Pro8中文版更新说明及系统要求介绍
  • 【id:19】【20分】A. 三数论大小(引用)
  • To_Heart—总结——FWT(快速沃尔什变换)
  • Google巨大漏洞让Win10、11翻车,小姐姐马赛克白打了
  • 腾讯云服务器部署内网穿透(让其他人在不同ip可以访问我们localhost端口的主机项目)(nps开源项目)
  • IDS、恶意软件、免杀技术、反病毒技术、APT、对称加密、非对称加密以及SSL的工作过程的技术介绍
  • 怎么把pdf转换成高清图片
  • MATLAB 系统辨识 + PID 自动调参
  • 【vue3】组合式API之setup()介绍与reactive()函数的使用·上
  • 爬虫Day3 csv和bs4
  • nnAudio的简单介绍
  • 【id:134】【20分】B. 求最大值最小值(引用)
  • Java 面向对象
  • 五、传输层
  • Thinkphp 6.0一对一关联查询
  • 基于51单片机的自动打铃打鸣作息报时系统AT89C51数码管三极管时钟电路
  • 算法详解-双指针算法的魅力-一种简单而高效的编程思想
  • 网页审查元素
  • gpt2 adapter finetune
  • Day14_文件操作
  • leetcode 轮转数组 189
  • Leetcode.1849 将字符串拆分为递减的连续值
  • Android布局层级过深为什么会对性能有影响?为什么Compose没有布局嵌套问题?
  • 【UR机械臂CB3 网络课程 】
  • dp-统计字典序元音字符串的数目
  • LFM雷达实现及USRP验证【章节3:连续雷达测距测速】
  • COLMAP多视角视图数据可视化