当前位置: 首页 > news >正文

To_Heart—总结——FWT(快速沃尔什变换)

目录

    • 闲话
    • 拿来求什么
      • 异或

闲话

这个比FFT简单了很多呢,,大概是我可以学懂的水平!

好像是叫 快速沃尔什变换 ?

拿来求什么

以 FFT 来类比。我们 FFT 可以在 O(nlogn)\mathrm{O(nlogn)}O(nlogn) 的复杂度下实现求解:

Ck=∑i+j=kAi×BjC_k=\sum_{i + j=k} A_i \times B_j Ck=i+j=kAi×Bj

那么 FWT 的作用就是再 O(nlogn)\mathrm{O(nlogn)}O(nlogn) 的时间复杂度下面求解:

Ck=∑i⊕j=kAi×BjC_k=\sum_{i \oplus j=k} A_i \times B_j Ck=ij=kAi×Bj

其中的 ⊕\oplus 是位运算异或的意思。 FWT 应该是支持 ⊕\oplus∣|&\&& 三种位运算的。

然后就准备开始讲这三种位运算分别对应的算法。

我们定义 FWT(A)i=∑j∣i=iAj\mathrm{FWT(A)_i}=\sum_{j|i=i} A_jFWT(A)i=ji=iAj。根据定义可以知道 FWT(A)\mathrm{FWT(A)}FWT(A) 是一个由 AAA 构造出来的多项式。先不管如何构造,我们考虑 FWT(A)\mathrm{FWT(A)}FWT(A) 有什么用。我们发现:

FWT(A)×FWT(B)\mathrm{FWT(A)} \times \mathrm{FWT(B)}FWT(A)×FWT(B)
=∑i=0FWT(A)i×FWT(B)i=\sum_{i=0} \mathrm{FWT(A)_i} \times \mathrm{FWT(B)_i}=i=0FWT(A)i×FWT(B)i
=∑i=0(∑j∣i=iAj×∑k∣i=iBk)=\sum_{i=0} ( \sum_{j|i=i} A_j \times \sum_{k|i=i} B_ k)=i=0(ji=iAj×ki=iBk)

=∑i=0∑(j∣k)∣i=iAj×Bk=\sum_{i=0} \sum_{(j|k)|i=i} A_j \times B_ k=i=0(jk)i=iAj×Bk

=∑i=0∑(j∣k)∣i=iCi=\sum_{i=0} \sum_{(j|k)|i=i} C_i=i=0(jk)i=iCi
=FWT(C)=\mathrm{FWT(C)}=FWT(C)

所以我们发现可以在 O(n)\mathrm{O(n)}O(n) 的时间复杂度下实现由 A,BA,BA,BCCC 的转换。所以现在的问题就是如何在 O(nlogn)\mathrm{O(nlogn)}O(nlogn) 及以下的时间复杂度中求出 FWT(A)\mathrm{FWT(A)}FWT(A)

考虑分治。假设 AAA2n2^n2n 项,那么 A0A_0A0 表示 AAA 的前 2n−12^{n-1}2n1A1A_1A1 表示 AAA 的后 2n−12^{n-1}2n1 项。

然后就可以得到一个崭新的转移:

FWT(A)={FWT(A0),FWT(A1)+FWT(A0)n≥1An=0\mathrm{FWT(A)}=\begin{cases}{\mathrm{FWT(A_0)},\mathrm{FWT(A_1)}+\mathrm{FWT(A_0)}}&{n\geq 1}\\{A}&{n=0}\end{cases}FWT(A)={FWT(A0),FWT(A1)+FWT(A0)An1n=0

这个 ,可以理解成把两个多项式拼起来。

如何理解这个式子呢?n=0n=0n=0 的边界很好理解,问题在上面一个式子。

你考虑 A0A_0A0A1A_1A1 的区别:在 AAA 中且在 A0A_0A0中 的项的下标的最高位一定是 0 ;在 AAA 中且在 A1A_1A1中 的项的下标的最高位一定是 1 ;

所以你发现从 A0A_0A0A1A_1A1AAA 中只有可能是 A0A_0A0 所在的项给 A1A_1A1 所在的项做贡献。

所以就可以做到 O(nlogn)\mathrm{O(nlogn)}O(nlogn) 的时间复杂度实现从 AAAFWT(A)\mathrm{FWT(A)}FWT(A) 的转换了。

但是还需要实现从 FWT(A)\mathrm{FWT(A)}FWT(A)AAA 的转换,也就是逆转换。

你感性理解一下,大概就是 A_0 会影响的两个位置,其中一个只有 A_0 ,另一个是 A_0+A_1 ,所以设 x_0 为改变的第一个位置, x_1 为改变的第二个位置,那么有 x=A0x=A_0x=A0y=A0+A1y=A_0+A_1y=A0+A1 。现在是知道了 x 和 y ,所以 A0=xA_0=xA0=xA1=y−A0=y−xA_1=y-A_0=y-xA1=yA0=yx

那么关于 或运算 的 FWT 就可以实现了:

void OR(ll *a,int n,int op){ //op=1是顺转换,op=-1是逆转换for(int mid=1;mid<n;mid<<=1) for(int len=mid<<1,j=0;j<n;j+=len) for(int i=j;i<j+mid;i++)a[i+mid]=(a[i+mid]+a[i]*op+Mod)%Mod;
}

这个和 或 差不多,但是注意到只有 A1A_1A1 可以向 A0A_0A0 贡献,所以反过来。

void AND(ll *a,int n,int op){for(int mid=1;mid<n;mid<<=1) for(int len=mid<<1,j=0;j<n;j+=len) for(int i=j;i<j+mid;i++)a[i]=(a[i]+a[i+mid]*op+Mod)%Mod;
}

异或

这个可能要麻烦一点。

异或本身并不好统一的下标之间的关联。什么意思呢?对于 或 ,我们可以很清楚的发现对于所有情况都是 A0A_0A0A1A_1A1 做贡献;对于 与,所有情况都是 A1A_1A1A0A_0A0 做贡献。但是异或并不满足这样的性质。所以需要考虑一种构造 FWT\mathrm{FWT}FWT 的方式使得 A0A_0A0A1A_1A1 的做贡献方式是一成不变的。

那么考虑怎么找到构造方式。

http://www.lryc.cn/news/43820.html

相关文章:

  • Google巨大漏洞让Win10、11翻车,小姐姐马赛克白打了
  • 腾讯云服务器部署内网穿透(让其他人在不同ip可以访问我们localhost端口的主机项目)(nps开源项目)
  • IDS、恶意软件、免杀技术、反病毒技术、APT、对称加密、非对称加密以及SSL的工作过程的技术介绍
  • 怎么把pdf转换成高清图片
  • MATLAB 系统辨识 + PID 自动调参
  • 【vue3】组合式API之setup()介绍与reactive()函数的使用·上
  • 爬虫Day3 csv和bs4
  • nnAudio的简单介绍
  • 【id:134】【20分】B. 求最大值最小值(引用)
  • Java 面向对象
  • 五、传输层
  • Thinkphp 6.0一对一关联查询
  • 基于51单片机的自动打铃打鸣作息报时系统AT89C51数码管三极管时钟电路
  • 算法详解-双指针算法的魅力-一种简单而高效的编程思想
  • 网页审查元素
  • gpt2 adapter finetune
  • Day14_文件操作
  • leetcode 轮转数组 189
  • Leetcode.1849 将字符串拆分为递减的连续值
  • Android布局层级过深为什么会对性能有影响?为什么Compose没有布局嵌套问题?
  • 【UR机械臂CB3 网络课程 】
  • dp-统计字典序元音字符串的数目
  • LFM雷达实现及USRP验证【章节3:连续雷达测距测速】
  • COLMAP多视角视图数据可视化
  • 2023年全国最新高校辅导员精选真题及答案36
  • ThreeJS-全屏和退出全屏、自适应大小(五)
  • 等级保护2.0要求及所需设备清单
  • 【大数据之Hadoop】六、HDFS之NameNode、Secondary NameNode和DataNode的内部工作原理
  • 小黑子—Java从入门到入土过程:第四章
  • 数据库原理及应用(四)——SQL语句(2)SQL基础查询以及常见运算符