To_Heart—总结——FWT(快速沃尔什变换)
目录
- 闲话
- 拿来求什么
- 或
- 与
- 异或
闲话
这个比FFT简单了很多呢,,大概是我可以学懂的水平!
好像是叫 快速沃尔什变换 ?
拿来求什么
以 FFT 来类比。我们 FFT 可以在 O(nlogn)\mathrm{O(nlogn)}O(nlogn) 的复杂度下实现求解:
Ck=∑i+j=kAi×BjC_k=\sum_{i + j=k} A_i \times B_j Ck=i+j=k∑Ai×Bj
那么 FWT 的作用就是再 O(nlogn)\mathrm{O(nlogn)}O(nlogn) 的时间复杂度下面求解:
Ck=∑i⊕j=kAi×BjC_k=\sum_{i \oplus j=k} A_i \times B_j Ck=i⊕j=k∑Ai×Bj
其中的 ⊕\oplus⊕ 是位运算异或的意思。 FWT 应该是支持 ⊕\oplus⊕、∣|∣、 &\&& 三种位运算的。
然后就准备开始讲这三种位运算分别对应的算法。
或
我们定义 FWT(A)i=∑j∣i=iAj\mathrm{FWT(A)_i}=\sum_{j|i=i} A_jFWT(A)i=∑j∣i=iAj。根据定义可以知道 FWT(A)\mathrm{FWT(A)}FWT(A) 是一个由 AAA 构造出来的多项式。先不管如何构造,我们考虑 FWT(A)\mathrm{FWT(A)}FWT(A) 有什么用。我们发现:
FWT(A)×FWT(B)\mathrm{FWT(A)} \times \mathrm{FWT(B)}FWT(A)×FWT(B)
=∑i=0FWT(A)i×FWT(B)i=\sum_{i=0} \mathrm{FWT(A)_i} \times \mathrm{FWT(B)_i}=i=0∑FWT(A)i×FWT(B)i
=∑i=0(∑j∣i=iAj×∑k∣i=iBk)=\sum_{i=0} ( \sum_{j|i=i} A_j \times \sum_{k|i=i} B_ k)=i=0∑(j∣i=i∑Aj×k∣i=i∑Bk)
=∑i=0∑(j∣k)∣i=iAj×Bk=\sum_{i=0} \sum_{(j|k)|i=i} A_j \times B_ k=i=0∑(j∣k)∣i=i∑Aj×Bk
=∑i=0∑(j∣k)∣i=iCi=\sum_{i=0} \sum_{(j|k)|i=i} C_i=i=0∑(j∣k)∣i=i∑Ci
=FWT(C)=\mathrm{FWT(C)}=FWT(C)
所以我们发现可以在 O(n)\mathrm{O(n)}O(n) 的时间复杂度下实现由 A,BA,BA,B 到 CCC 的转换。所以现在的问题就是如何在 O(nlogn)\mathrm{O(nlogn)}O(nlogn) 及以下的时间复杂度中求出 FWT(A)\mathrm{FWT(A)}FWT(A) 。
考虑分治。假设 AAA 有 2n2^n2n 项,那么 A0A_0A0 表示 AAA 的前 2n−12^{n-1}2n−1 ,A1A_1A1 表示 AAA 的后 2n−12^{n-1}2n−1 项。
然后就可以得到一个崭新的转移:
FWT(A)={FWT(A0),FWT(A1)+FWT(A0)n≥1An=0\mathrm{FWT(A)}=\begin{cases}{\mathrm{FWT(A_0)},\mathrm{FWT(A_1)}+\mathrm{FWT(A_0)}}&{n\geq 1}\\{A}&{n=0}\end{cases}FWT(A)={FWT(A0),FWT(A1)+FWT(A0)An≥1n=0
这个 ,
可以理解成把两个多项式拼起来。
如何理解这个式子呢?n=0n=0n=0 的边界很好理解,问题在上面一个式子。
你考虑 A0A_0A0 和 A1A_1A1 的区别:在 AAA 中且在 A0A_0A0中 的项的下标的最高位一定是 0 ;在 AAA 中且在 A1A_1A1中 的项的下标的最高位一定是 1 ;
所以你发现从 A0A_0A0 和 A1A_1A1 向 AAA 中只有可能是 A0A_0A0 所在的项给 A1A_1A1 所在的项做贡献。
所以就可以做到 O(nlogn)\mathrm{O(nlogn)}O(nlogn) 的时间复杂度实现从 AAA 到 FWT(A)\mathrm{FWT(A)}FWT(A) 的转换了。
但是还需要实现从 FWT(A)\mathrm{FWT(A)}FWT(A) 到 AAA 的转换,也就是逆转换。
你感性理解一下,大概就是 A_0 会影响的两个位置,其中一个只有 A_0 ,另一个是 A_0+A_1 ,所以设 x_0 为改变的第一个位置, x_1 为改变的第二个位置,那么有 x=A0x=A_0x=A0 和 y=A0+A1y=A_0+A_1y=A0+A1 。现在是知道了 x 和 y ,所以 A0=xA_0=xA0=x,A1=y−A0=y−xA_1=y-A_0=y-xA1=y−A0=y−x
那么关于 或运算 的 FWT 就可以实现了:
void OR(ll *a,int n,int op){ //op=1是顺转换,op=-1是逆转换for(int mid=1;mid<n;mid<<=1) for(int len=mid<<1,j=0;j<n;j+=len) for(int i=j;i<j+mid;i++)a[i+mid]=(a[i+mid]+a[i]*op+Mod)%Mod;
}
与
这个和 或 差不多,但是注意到只有 A1A_1A1 可以向 A0A_0A0 贡献,所以反过来。
void AND(ll *a,int n,int op){for(int mid=1;mid<n;mid<<=1) for(int len=mid<<1,j=0;j<n;j+=len) for(int i=j;i<j+mid;i++)a[i]=(a[i]+a[i+mid]*op+Mod)%Mod;
}
异或
这个可能要麻烦一点。
异或本身并不好统一的下标之间的关联。什么意思呢?对于 或 ,我们可以很清楚的发现对于所有情况都是 A0A_0A0 向 A1A_1A1 做贡献;对于 与,所有情况都是 A1A_1A1 向 A0A_0A0 做贡献。但是异或并不满足这样的性质。所以需要考虑一种构造 FWT\mathrm{FWT}FWT 的方式使得 A0A_0A0 和 A1A_1A1 的做贡献方式是一成不变的。
那么考虑怎么找到构造方式。