当前位置: 首页 > news >正文

C# 中的多线程同步:原子变量、原子操作、内存顺序和可见性

C# 中的多线程同步:原子变量、原子操作、内存顺序和可见性

引言

随着现代计算机系统的发展,多核处理器已经变得非常普遍。在这种环境下,多线程编程成为提高应用程序性能的关键技术之一。然而,多线程编程带来了新的挑战,其中之一就是确保数据在并发访问时的一致性和安全性。本文将探讨 C# 中的多线程同步机制,特别是原子变量、原子操作、内存顺序和可见性,并通过代码示例来演示如何使用这些工具来构建健壮的并发程序。

原子操作与原子变量

在多线程环境中,原子操作是指那些不可中断的操作。这意味着一旦开始执行,该操作就会一直执行到完成,期间不会被其他线程中断。C# 中提供了多种工具来实现原子操作,包括 Interlocked 类和 System.Threading.Atomic 类。

Interlocked

Interlocked 类提供了多个静态方法来执行原子操作,这些方法可以确保在多线程环境中对整型变量的操作是原子的。例如,Interlocked.IncrementInterlocked.Decrement 可以用于安全地增加或减少共享变量的值。

示例代码
using System;
using System.Threading;class Program
{private static int counter = 0;private static CountDownEvent allDone = new CountDownEvent(5); // 五个线程static void Increment(){for (int i = 0; i < 100000; i++){Interlocked.Increment(ref counter);}allDone.Signal(); // 通知检查线程,本线程已完成递增}static void Check(){allDone.Wait(); // 等待所有线程完成int finalValue = counter;Console.WriteLine($"Final counter value: {finalValue}");// 验证最终值是否等于预期int expectedValue = 5 * 100000; // 五个线程,每个线程递增100000次if (finalValue == expectedValue){Console.WriteLine("Counter incremented correctly.");}else{Console.WriteLine("Counter did not increment correctly.");}}static void Main(string[] args){var threads = new Thread[5];for (int i = 0; i < 5; i++){threads[i] = new Thread(new ThreadStart(Increment));threads[i].Start();}var checkThread = new Thread(new ThreadStart(Check));checkThread.Start();foreach (var thread in threads){thread.Join();}checkThread.Join();}
}

System.Threading.Atomic

从 C# 8.0 开始,引入了 System.Threading.Atomic 类,该类提供了原子类型的实现,类似于 C++ 中的 std::atomic。使用 System.Threading.Atomic 类可以更加方便地处理原子操作。

示例代码
using System;
using System.Threading;class Program
{private static int counter = 0;private static CountDownEvent allDone = new CountDownEvent(5); // 五个线程static void Increment(){for (int i = 0; i < 100000; i++){Interlocked.Increment(ref counter);}allDone.Signal(); // 通知检查线程,本线程已完成递增}static void Check(){allDone.Wait(); // 等待所有线程完成int finalValue = counter;Console.WriteLine($"Final counter value: {finalValue}");// 验证最终值是否等于预期int expectedValue = 5 * 100000; // 五个线程,每个线程递增100000次if (finalValue == expectedValue){Console.WriteLine("Counter incremented correctly.");}else{Console.WriteLine("Counter did not increment correctly.");}}static void Main(string[] args){var threads = new Thread[5];for (int i = 0; i < 5; i++){threads[i] = new Thread(new ThreadStart(Increment));threads[i].Start();}var checkThread = new Thread(new ThreadStart(Check));checkThread.Start();foreach (var thread in threads){thread.Join();}checkThread.Join();}
}

内存顺序和可见性

在多线程环境中,内存顺序和可见性是非常重要的概念。内存顺序指的是内存操作的顺序,而可见性则确保一个线程对共享数据的修改对其他线程可见。

内存顺序

内存顺序决定了内存操作的执行顺序,这对于确保数据的一致性至关重要。在 C# 中,Interlocked 类提供了不同的内存顺序选项,如 MemoryOrderReleaseMemoryOrderAcquireMemoryOrderSeqCst 等。

示例代码
using System;
using System.Threading;class Program
{private static int flag = 0;private static int counter = 0;static void Writer(){Interlocked.Exchange(ref flag, 1, MemoryOrder.Release); // 设置 flagInterlocked.Exchange(ref counter, 42, MemoryOrder.Release); // 设置 counter}static void Reader(){while (Interlocked.CompareExchange(ref flag, 0, 1, MemoryOrder.Acquire) != 1){Thread.Yield(); // 使当前线程放弃执行权}Console.WriteLine("Counter value: " + Interlocked.Exchange(ref counter, 0, MemoryOrder.Acquire));}static void Main(string[] args){var writerThread = new Thread(Writer);var readerThread = new Thread(Reader);writerThread.Start();readerThread.Start();writerThread.Join();readerThread.Join();Console.WriteLine("Final counter value: " + counter);}
}

内存可见性

内存可见性确保一个线程对共享数据的修改对其他线程可见。在 C# 中,使用 volatile 关键字可以标记一个变量,确保编译器不会对该变量进行优化,从而保证在多线程环境中的内存可见性。但是,volatile 本身并不提供原子性,仅保证内存可见性。

示例代码
using System;
using System.Threading;class Program
{private static volatile bool flag = false;private static int counter = 0;static void Writer(){flag = true;counter = 42;}static void Reader(){while (!flag){Thread.Yield(); // 使当前线程放弃执行权}Console.WriteLine("Counter value: " + counter);}static void Main(string[] args){var writerThread = new Thread(Writer);var readerThread = new Thread(Reader);writerThread.Start();readerThread.Start();writerThread.Join();readerThread.Join();Console.WriteLine("Final counter value: " + counter);}
}

结论

多线程编程需要仔细考虑数据的一致性和同步问题。C# 提供了多种工具来帮助开发者构建健壮的并发程序,包括 Interlocked 类、System.Threading.Atomic 类以及 volatile 关键字。通过合理使用这些工具,可以有效地避免数据竞争和其他并发问题,确保程序的正确性和高效性。


通过上述示例和解释,我们看到了如何在 C# 中使用原子变量、原子操作、内存顺序和可见性来构建可靠的多线程应用程序。希望这篇文章能帮助你在开发并发程序时更好地理解和运用这些概念。

http://www.lryc.cn/news/438255.html

相关文章:

  • 视图(mysql)
  • elementui组件el-upload实现批量文件上传
  • 【JAVA入门】Day45 - 压缩流 / 解压缩流
  • Qt_自定义信号
  • 【运维方案】某系统运维需求方案参考(doc全原件2024)
  • Linux环境使用Git同步教程
  • c++临时对象导致的生命周期问题
  • CSP-J 算法基础 深度优先搜索
  • LeetCode题练习与总结:基本计算器 Ⅱ--227
  • Elasticsearch基础(七):Logstash如何开启死信队列
  • c语言--力扣简单题目(链表的中间节点)讲解
  • 【STM32 Blue Pill编程】-定时器计数模式
  • 【例题】lanqiao1331 二进制中 1 的个数
  • 【论文解读】图像序列识别:CRNN技术在场景文本识别中的应用与突破(附论文地址)
  • Vue3+CesiumJS相机定位camera
  • turbo译码算法MAX, MAX_SCALE and MAX_STAR的比较
  • 关于HarmonyOS的学习
  • 【雅特力AT32】搭建模板工程及GPIO点灯操作
  • 实战千问2大模型第三天——Qwen2-VL-7B(多模态)视频检测和批处理代码测试
  • 数据库索引底层数据结构之B+树MySQL中的页索引分类【纯理论干货,面试必备】
  • 编译QT源码时的configure参数须知
  • 如何利用人工智能大模型来进行数字化营销?
  • 【MRI基础】回波序列长度-echo train length ETL概念
  • (179)时序收敛--->(29)时序收敛二九
  • [Visual Stuidio 2022使用技巧]2.配置及常用快捷键
  • 每日奇难怪题(持续更新)
  • 江协科技STM32学习- P13 TIM定时器中断
  • git github仓库管理
  • 【JavaEE】线程安全性问题,线程不安全是怎么产生的,该如何应对
  • 低代码-赋能新能源汽车产业加速前行