当前位置: 首页 > news >正文

(算法基础)Floyd算法

适用情景

  1. Floyd算法适用于多源汇最短路,也就是他问你比如说从3号点到6号点的最短路距离,比如说从7号点到20号点的最短路距离,而不是单源最短路(从1号点到n号点的最短路距离)。在这个算法当中允许负权边的存在。但在求最短路距离当中(包括其他算法也一样)是不能够出现负环的,因为这样最短路距离可能变到负无穷去了


时间复杂度

  1. 三重无脑循环,显然O(N^3)。


算法解释

  1. 首先,对于Floyd算法来说,对于图的存储必须要用邻接矩阵来存,不能用邻接表。然后对于邻接矩阵,一开始当然得初始化,这边必须得注意:由于是图,这个矩阵无论是行还是列,有效位都是从一开始。

int dist[N][N];  //N表示图中点的个数+1
  1. 然后Floyd算法是允许这个图当中存在负权边,但是不能出现负环因为在最短路问题当中的话,一旦出现负环,最短路可能变成负无穷)。然后需要对dist数组初始化,这边再提一句:我们现在已经是默认图当中没有负环,好那么现在如果说存在自环的话,肯定是正的,在最短路当中那就不予考虑,于是在初始化的过程当中,如果说i等于j,直接就是0,其他的话就初始化成正无穷,为什么要正无穷?想想就知道了,等会儿我肯定需要min操作

for (int i=1;i<=n;i++)
{for (int j=1;j<=n;j++){if (i==j){dist[i][j]=0;}else{dist[i][j]=0x3f3f3f3f;}}
}
  1. 然后当往这个邻接矩阵当中去输入一条一条图当中的边的时候,由于我们现在是最短路问题,因此我们只需要取小的就可以了,然后如果是自环的话,所以我们默认是没有负环的,因此取小后就是0

while(m--)
{scanf("%d %d %d",&a,&b,&c);dist[a][b]=MIN(dist[a][b],c);
}
  1. 然后接下来就是执行Floyd算法,其实就是三重循环,外循环k从1到n,第二层循环i从1到n,第三层循环j从1到n。然后每一层循环的话就如下比较一下,至于原理的话,这个是与动态规划有关,像我现在的话也掌握不了,先把算法的步骤先记牢吧

for (int k=1;k<=n;k++)
{for (int i=1;i<=n;i++){for (int j=1;j<=n;j++){dist[i][j]=MIN(dist[i][j],dist[i][k]+dist[k][j]);}}
}
  1. 然后当这三重循环结束之后,原先dist数组是用来存边的,现在他已经像孙悟空变身一样,变成了从i到j的最短距离了。当然也有可能的情况就是从i到j的话是走不到的,这时候还谈个屁最短路啊,那如何去判断走不到的这种情况呢?由于是允许存在负权边的情况,因此当在更新的时候有可能会把这个无穷大的值稍微更新了小了一些,因此不能直接dist[ i ][ j ] 等于 0x3f3f3f3f

while(k--)
{scanf("%d %d",&a,&b);if(dist[a][b]>0x3f3f3f3f/2){printf("impossible\n");}else{printf("%d\n",dist[a][b]);}
}

例题

来源:AcWing

854. Floyd求最短路 - AcWing题库

#include <stdio.h>
#define N 210
#define MIN(a,b) ((a)<(b)?(a):(b))
int dist[N][N];
int main()
{int n,m,k,a,b,c;scanf("%d %d %d",&n,&m,&k);for (int i=1;i<=n;i++){for (int j=1;j<=n;j++){if (i==j){dist[i][j]=0;}else{dist[i][j]=0x3f3f3f3f;}}}while(m--){scanf("%d %d %d",&a,&b,&c);dist[a][b]=MIN(dist[a][b],c);}for (int k=1;k<=n;k++){for (int i=1;i<=n;i++){for (int j=1;j<=n;j++){dist[i][j]=MIN(dist[i][j],dist[i][k]+dist[k][j]);}}}while(k--){scanf("%d %d",&a,&b);if(dist[a][b]>0x3f3f3f3f/2){printf("impossible\n");}else{printf("%d\n",dist[a][b]);}}return 0;
}
http://www.lryc.cn/news/43788.html

相关文章:

  • SQL语法:浅析select之七大子句
  • 中国人民大学与加拿大女王大学金融硕士——去有光的地方,并成为自己的光
  • Python数据结构与算法篇(五)-- 二分查找与二分答案
  • 小游戏也要讲信用
  • 贪心算法11
  • 【并发编程】JUC并发编程(彻底搞懂JUC)
  • Compose 动画 (七) : 高可定制性的动画 Animatable
  • vue3组件传值
  • 小白开发微信小程序00--文章目录
  • 随手记录第九话 -- Java框架整合篇
  • 电影《铃芽之旅》观后感
  • Web自动化测试(二)(全网最给力自动化教程)
  • 【C语言经典例题!】逆序字符串
  • 21 - 二叉树(三)
  • 【A-Star算法】【学习笔记】【附GitHub一个示例代码】
  • 纽扣电池澳大利亚认证的更新要求
  • 零代码零距离,明道云开放日北京站圆满结束
  • 第五章Vue路由
  • Git常用指令
  • Java每日一练(20230329)
  • 【面试题】JS的一些优雅写法 reduce和map
  • 【蓝桥杯真题】包子凑数(裴蜀定理、动态规划、背包问题)
  • 一种免费将PDF转word的方式
  • MyBatis-面试题
  • jQuery一些问题和ajax操作
  • Pytorch构建自己的数据集
  • 信息论小课堂:纠错码(海明码在信息传输编码时,通过巧妙的信道编码保证有了错误能够自动纠错。)
  • MySQL执行计划(explain)
  • 思必驰回复第二轮审核问询,如何与科大讯飞、阿里巴巴“虎口夺食”?
  • 基于Spring、SpringMVC、MyBatis的汽车租赁系统设计