当前位置: 首页 > news >正文

《卷积神经网络 CNN 原理探秘》

CNN基本原理详解

       卷积神经网络(Convolutional Neural Network,简称CNN),是一种前馈神经网络,人工神经元可以响应周围单元,可以进行大型图像处理。卷积神经网络包括卷积层和池化层。
       卷积神经网络是受到生物思考方式启发的MLPs(多层感知器),它有着不同的类别层次,并且各层的工作方式和作用也不同。这里提供一个较好的CNN教程(http://cs231n.github.io/convolutional-networks/)。文章中详细介绍了CNN的计算方式和数据的流动过程,这里只做简单的介绍。

传统神经网络如下图所示

传统神经网络

CNN网络结构

CNN网络结构

如图所示,CNN网络工作时,会伴随着卷积并且不断转换着这些卷积。

Keras–基于python的深度学习框架

       Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow、Theano以及CNTK后端。Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras:

  • 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性)
  • 支持CNN和RNN,或二者的结合
  • 无缝CPU和GPU切换
    keras适用于python:2.7-3.6
    安装需要执行:
    pip install keras
    即可。

CNN基本原理

<注>:本文主要介绍CNN的基本原理,不会细说传统神经网络和神经元的知识,假定你已经了解这些。

1 CNN网络层级结构
CNN网络一共有5个层级结构:

  • 输入层
  • 卷积层
  • 激活层
  • 池化层
  • 全连接FC层

输入层

       与传统神经网络/机器学习一样,模型需要输入的进行预处理操作,常见的3中预处理方式有:

  • 去均值
  • 归一化
  • PCA/SVD降维等

卷积层

       局部感知:人的大脑识别图片的过程中,并不是一下子整张图同时识别,而是对于图片中的每一个特征首先局部感知,然后更高层次对局部进行综合操作,从而得到全局信息。
       卷积层使用“**卷积核”**进行局部感知。举个例子来讲,一个32×32×3的RGB图经过一层5×5×3的卷积后变成了一个28×28×1的特征图,那么输入层共有32×32×3=3072个神经元,第一层隐层会有28×28=784个神经元,这784个神经元对原输入层的神经元只是局部连接,如下图所示:

CNN卷积层示意
       通过局部感知特性,大大减少了模型的计算参数。但是仅仅这样还是依然会有很多参数。这就有了权值共享机制:
       在上面的局部感知中,假设有1m的隐层神经元,每个神经元1010的连接,这样就会有1m10*10个参数。实际上,对于每一层来讲,所有神经元对应的权值应该是相等的,也就是说,第一个神经元的参数向量为[w1,w2,…,w100],那么其他同层的神经元也是[w1,w2,…,w100],这就是权值共享。
       为什么需要权值共享呢?同一层下的神经元的连接参数只与特征提取的有关,而与具体的位置无关,因此可以保证同一层中所有位置的连接是权值共享的。例如:第一层隐层是一般用边缘检测,第二层是对第一层学到的边缘曲线组合得到一些特征,比如:角度、线形等;第三层会学到更加复杂的特征,比如:眼睛、眉毛等。对于同一层来说,他们提取特征的方式是一样的,第三层的神经元都是用来提取“眼睛”的特征,因此,需要计算的参数是一样的。

卷积计算示例

激励层

所谓激励,实际上是对卷积层的输出结果做一次非线性映射。
如果不用激励函数(其实就相当于激励函数是f(x)=x),这种情况下,每一层的输出都是上一层输入的线性函数。容易得出,无论有多少神经网络层,输出都是输入的线性组合,与没有隐层的效果是一样的,这就是最原始的感知机了。
常用的激励函数有:

  • Sigmoid函数
  • Tanh函数
  • ReLU
  • Leaky ReLU
  • ELU
  • Maxout
    激励层建议:首先ReLU,因为迭代速度快,但是有可能效果不加。如果ReLU失效的情况下,考虑使用Leaky ReLU或者Maxout,此时一般情况都可以解决。Tanh函数在文本和音频处理有比较好的效果。

池化层

池化(Pooling):也称为欠采样下采样。主要用于特征降维,压缩数据和参数的数量,减小过拟合,同时提高模型的容错性。主要有:

  • Max Pooling:最大池化
  • Average Pooling:平均池化

最大池化示意图
通过池化层,使得原本44的特征图压缩成了22,从而降低了特征维度。

Pooling操作
虽然人不太容易分辨出池化后的特征图,但是没关系,机器还是可以识别的。

输出层

经过前面若干次卷积+激励+池化后,终于来到了输出层,模型会将学到的一个高质量的特征图片全连接层。其实在全连接层之前,如果神经元数目过大,学习能力强,有可能出现过拟合。因此,可以引入dropout操作,来随机删除神经网络中的部分神经元,来解决此问题。还可以进行局部归一化(LRN)、数据增强等操作,来增加鲁棒性,这里不做介绍。
当来到了全连接层之后,可以理解为一个简单的多分类神经网络(如:BP神经网络),通过softmax函数得到最终的输出。整个模型训练完毕。
下图展示了一个含有多个卷积层+激励层+池化层的过程:

CNN完整过程示意图

http://www.lryc.cn/news/436291.html

相关文章:

  • C#获取计算机信息
  • 派遣函数 - 通过设备链接打开设备
  • Vue 2 中的 `$set` 方法详解
  • 掌握Hive函数[2]:从基础到高级应用
  • 水壶问题记录
  • spring综合性利用工具-SpringBootVul-GUI(五)
  • 2024年9月12日(k8s环境及测试 常用命令)
  • 卫生间漏水原因很多,切莫病急乱投医
  • IEEE 802.11a OFDM系统的仿真(续)
  • Linux cut命令详解使用:掌握高效文本切割
  • c++11新特性——endable_shared_from_this
  • 小程序的右侧抽屉开关动画手写效果
  • vue3中el-table中点击图片放大时,被表格覆盖
  • GO学习笔记(4) strconv/time
  • 课程管理系统-数据库-基于MySQL的数据库课程设计
  • 降维打击 华为赢麻了
  • [数据集][目标检测]汽车头部尾部检测数据集VOC+YOLO格式5319张3类别
  • python 生成的代码,需要帮我生成一个直接在一台没有依赖的电脑上运行的 包
  • 【Linux】操作系统与进程
  • 【Linux】 LTG:移动硬盘部署Ubuntu24.04
  • Android的logcat日志详解
  • 【Linux】:信号的保存和信号处理
  • 深入理解Java虚拟机:Jvm总结-Java内存区域与内存溢出异常
  • 跨境电商必备保护账号的4个网络环境设置
  • Python+requests接口自动化测试框架实例教程
  • 【网络安全】DNS重绑定原理详析
  • C语言初识编译和链接
  • TrinityCore环境搭建
  • Proteus 仿真设计:开启电子工程创新之门
  • microchip dspic3一些奇怪问题