当前位置: 首页 > news >正文

基于百度AIStudio飞桨paddleRS-develop版道路模型开发训练

基于百度AIStudio飞桨paddleRS-develop版道路模型开发训练

参考地址:https://aistudio.baidu.com/projectdetail/8271882

基于python35+paddle120+env环境
预测可视化结果:
在这里插入图片描述

(一)安装环境:
先上传本地下载的源代码PaddleRS-develop.zip
解压PaddleRS-develop.zip到目录PaddleRS
然后分别执行下面安装命令!pip install

!unzip -q /home/aistudio/data/data191076/PaddleRS-develop.zip && mv PaddleRS-develop PaddleRS
!pip install matplotlib==3.4 scikit-image pycocotools -t /home/aistudio/external-libraries
!pip install  opencv-contrib-python -t /home/aistudio/external-libraries
!pip install -r PaddleRS/requirements.txt  -t /home/aistudio/external-libraries
!pip install -e PaddleRS/  -t /home/aistudio/external-libraries
!pip install paddleslim==2.6.0  -t /home/aistudio/external-libraries

添加环境组件

# 因为`sys.path`可能没有及时更新,这里选择手动更新
import sys
sys.path.append('/home/aistudio/external-libraries')
sys.path.append('/home/aistudio/PaddleRS')

(二)数据预处理tran_dataPre.py

%run tran_dataPre.py

(三)开始模型训练

%run trans.py

(四) tran_dataPre.py内容如下所示:

#先解压数据集
#!unzip -oq -d /home/aistudio/massroad /home/aistudio/data/data56961/mass_road.zip# 划分训练集/验证集/测试集,并生成文件名列表import random
import os.path as osp
from os import listdirimport cv2# 随机数生成器种子
RNG_SEED = 56961
# 调节此参数控制训练集数据的占比
TRAIN_RATIO = 0.9
# 数据集路径
DATA_DIR = '/home/aistudio/massroad'# 分割类别
CLASSES = ('background','road',
)def write_rel_paths(phase, names, out_dir, prefix):"""将文件相对路径存储在txt格式文件中"""with open(osp.join(out_dir, phase+'.txt'), 'w') as f:for name in names:f.write(' '.join([osp.join(prefix, 'input', name),osp.join(prefix, 'output', name)]))f.write('\n')random.seed(RNG_SEED)train_prefix = osp.join('road_segmentation_ideal', 'training')
test_prefix = osp.join('road_segmentation_ideal', 'testing')
train_names = listdir(osp.join(DATA_DIR, train_prefix, 'output'))
train_names = list(filter(lambda n: n.endswith('.png'), train_names))
test_names = listdir(osp.join(DATA_DIR, test_prefix, 'output'))
test_names = list(filter(lambda n: n.endswith('.png'), test_names))
# 对文件名进行排序,以确保多次运行结果一致
train_names.sort()
test_names.sort()
random.shuffle(train_names)
len_train = int(len(train_names)*TRAIN_RATIO)
write_rel_paths('train', train_names[:len_train], DATA_DIR, train_prefix)
write_rel_paths('val', train_names[len_train:], DATA_DIR, train_prefix)
write_rel_paths('test', test_names, DATA_DIR, test_prefix)# 写入类别信息
with open(osp.join(DATA_DIR, 'labels.txt'), 'w') as f:for cls in CLASSES:f.write(cls+'\n')print("数据集划分已完成。")# 将GT中的255改写为1,便于训练import os.path as osp
from glob import globimport cv2
from tqdm import tqdm# 数据集路径
# DATA_DIR = '/home/aistudio/massroad'train_prefix = osp.join('road_segmentation_ideal', 'training')
test_prefix = osp.join('road_segmentation_ideal', 'testing')train_paths = glob(osp.join(DATA_DIR, train_prefix, 'output', '*.png'))
test_paths = glob(osp.join(DATA_DIR, test_prefix, 'output', '*.png'))
for path in tqdm(train_paths+test_paths):im = cv2.imread(path, cv2.IMREAD_GRAYSCALE)im[im>0] = 1# 原地改写cv2.imwrite(path, im)

(五) trans.py内容如下所示:

# 导入需要用到的库import random
import os.path as ospimport cv2
import numpy as np
import paddle
import paddlers as pdrs
from paddlers import transforms as T
from matplotlib import pyplot as plt
from PIL import Imageimport sys
sys.path.append('/home/aistudio/external-libraries')
sys.path.append('/home/aistudio/PaddleRS')# 定义全局变量# 随机种子
SEED = 56961
# 数据集存放目录
DATA_DIR = '/home/aistudio/massroad/'
# 训练集`file_list`文件路径
TRAIN_FILE_LIST_PATH = '/home/aistudio/massroad/train.txt'
# 验证集`file_list`文件路径
VAL_FILE_LIST_PATH = '/home/aistudio/massroad/val.txt'
# 测试集`file_list`文件路径
TEST_FILE_LIST_PATH = '/home/aistudio/massroad/test.txt'
# 数据集类别信息文件路径
LABEL_LIST_PATH = '/home/aistudio/massroad/labels.txt'
# 实验目录,保存输出的模型权重和结果
EXP_DIR =  '/home/aistudio/exp/'# 固定随机种子,尽可能使实验结果可复现random.seed(SEED)
np.random.seed(SEED)
paddle.seed(SEED)# 构建数据集# 定义训练和验证时使用的数据变换(数据增强、预处理等)
train_transforms = T.Compose([T.DecodeImg(),# 随机裁剪T.RandomCrop(crop_size=512),# 以50%的概率实施随机水平翻转T.RandomHorizontalFlip(prob=0.5),# 以50%的概率实施随机垂直翻转T.RandomVerticalFlip(prob=0.5),# 将数据归一化到[-1,1]T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),T.ArrangeSegmenter('train')
])eval_transforms = T.Compose([T.DecodeImg(),T.Resize(target_size=1500),# 验证阶段与训练阶段的数据归一化方式必须相同T.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),T.ArrangeSegmenter('eval')
])# 分别构建训练和验证所用的数据集
train_dataset = pdrs.datasets.SegDataset(data_dir=DATA_DIR,file_list=TRAIN_FILE_LIST_PATH,label_list=LABEL_LIST_PATH,transforms=train_transforms,num_workers=4,shuffle=True
)val_dataset = pdrs.datasets.SegDataset(data_dir=DATA_DIR,file_list=VAL_FILE_LIST_PATH,label_list=LABEL_LIST_PATH,transforms=eval_transforms,num_workers=0,shuffle=False
)# 构建DeepLab V3+模型,使用ResNet-50作为backbone
model = pdrs.tasks.seg.DeepLabV3P(in_channels=3,num_classes=len(train_dataset.labels),backbone='ResNet50_vd'
)
model.initialize_net(pretrain_weights='CITYSCAPES',save_dir=osp.join(EXP_DIR, 'pretrain'),resume_checkpoint=None,is_backbone_weights=False
)# 构建优化器
optimizer = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.net.parameters()
)# 执行模型训练
model.train(num_epochs=100,train_dataset=train_dataset,train_batch_size=8,eval_dataset=val_dataset,optimizer=optimizer,save_interval_epochs=10,# 每多少次迭代记录一次日志log_interval_steps=30,save_dir=EXP_DIR,# 是否使用early stopping策略,当精度不再改善时提前终止训练early_stop=False,# 是否启用VisualDL日志功能use_vdl=True,# 指定从某个检查点继续训练resume_checkpoint=None
)

(六)训练生成过程信息

Output exceeds the size limit. Open the full output data in a text editor
2024-09-05 14:16:51 [INFO]	Loading pretrained model from /home/aistudio/exp/pretrain/model.pdparams
2024-09-05 14:16:53 [WARNING]	[SKIP] Shape of parameters head.decoder.conv.weight do not match. (pretrained: [19, 256, 1, 1] vs actual: [2, 256, 1, 1])
2024-09-05 14:16:53 [WARNING]	[SKIP] Shape of parameters head.decoder.conv.bias do not match. (pretrained: [19] vs actual: [2])
2024-09-05 14:16:53 [INFO]	There are 358/360 variables loaded into DeepLabV3P.
2024-09-05 14:17:46 [INFO]	[TRAIN] Epoch=1/100, Step=30/90, loss=0.133503, lr=0.001000, time_each_step=1.77s, eta=4:24:32
2024-09-05 14:18:25 [INFO]	[TRAIN] Epoch=1/100, Step=60/90, loss=0.181917, lr=0.001000, time_each_step=1.31s, eta=3:14:53
2024-09-05 14:19:02 [INFO]	[TRAIN] Epoch=1/100, Step=90/90, loss=0.112567, lr=0.001000, time_each_step=1.22s, eta=3:2:6
2024-09-05 14:19:03 [INFO]	[TRAIN] Epoch 1 finished, loss=0.15933047160506247 .
2024-09-05 14:19:44 [INFO]	[TRAIN] Epoch=2/100, Step=30/90, loss=0.141528, lr=0.001000, time_each_step=1.36s, eta=3:22:2
2024-09-05 14:20:20 [INFO]	[TRAIN] Epoch=2/100, Step=60/90, loss=0.165187, lr=0.001000, time_each_step=1.22s, eta=3:0:42
2024-09-05 14:20:57 [INFO]	[TRAIN] Epoch=2/100, Step=90/90, loss=0.145009, lr=0.001000, time_each_step=1.22s, eta=2:59:1
2024-09-05 14:20:58 [INFO]	[TRAIN] Epoch 2 finished, loss=0.1168842613697052 .
2024-09-05 14:21:39 [INFO]	[TRAIN] Epoch=3/100, Step=30/90, loss=0.126603, lr=0.001000, time_each_step=1.38s, eta=3:22:13
2024-09-05 14:22:16 [INFO]	[TRAIN] Epoch=3/100, Step=60/90, loss=0.117296, lr=0.001000, time_each_step=1.22s, eta=2:58:14
2024-09-05 14:22:53 [INFO]	[TRAIN] Epoch=3/100, Step=90/90, loss=0.072859, lr=0.001000, time_each_step=1.23s, eta=2:58:46
2024-09-05 14:22:53 [INFO]	[TRAIN] Epoch 3 finished, loss=0.10787189056475957 .
2024-09-05 14:23:34 [INFO]	[TRAIN] Epoch=4/100, Step=30/90, loss=0.081685, lr=0.001000, time_each_step=1.37s, eta=3:18:39
2024-09-05 14:24:11 [INFO]	[TRAIN] Epoch=4/100, Step=60/90, loss=0.087735, lr=0.001000, time_each_step=1.23s, eta=2:57:28
2024-09-05 14:24:48 [INFO]	[TRAIN] Epoch=4/100, Step=90/90, loss=0.084795, lr=0.001000, time_each_step=1.22s, eta=2:55:44
2024-09-05 14:24:49 [INFO]	[TRAIN] Epoch 4 finished, loss=0.10476481277081702 .
2024-09-05 14:25:30 [INFO]	[TRAIN] Epoch=5/100, Step=30/90, loss=0.098625, lr=0.001000, time_each_step=1.37s, eta=3:16:59
2024-09-05 14:26:07 [INFO]	[TRAIN] Epoch=5/100, Step=60/90, loss=0.078188, lr=0.001000, time_each_step=1.24s, eta=2:57:12
2024-09-05 14:26:43 [INFO]	[TRAIN] Epoch=5/100, Step=90/90, loss=0.098015, lr=0.001000, time_each_step=1.21s, eta=2:52:11
2024-09-05 14:26:44 [INFO]	[TRAIN] Epoch 5 finished, loss=0.10311256903741095 .
2024-09-05 14:27:25 [INFO]	[TRAIN] Epoch=6/100, Step=30/90, loss=0.109136, lr=0.001000, time_each_step=1.38s, eta=3:16:8
...
2024-09-05 15:39:38 [INFO]	Start to evaluate (total_samples=81, total_steps=81)...
2024-09-05 15:40:14 [INFO]	[EVAL] Finished, Epoch=40, miou=0.716638, category_iou=[0.96831487 0.46496069], oacc=0.969164, category_acc=[0.97447995 0.81316509], kappa=0.619485, category_F1-score=[0.98390241 0.63477565] .
2024-09-05 15:40:14 [INFO]	Current evaluated best model on eval_dataset is epoch_10, miou=0.7255623401044613
2024-09-05 15:40:18 [INFO]	Model saved in /home/aistudio/exp/epoch_40.

(七) 测试集预测结果:

# 构建测试集
test_dataset = pdrs.datasets.SegDataset(data_dir=DATA_DIR,file_list=TEST_FILE_LIST_PATH,label_list=LABEL_LIST_PATH,transforms=eval_transforms,num_workers=0,shuffle=False
)# 为模型加载历史最佳权重
state_dict = paddle.load(osp.join(EXP_DIR, 'best_model/model.pdparams'))
model.net.set_state_dict(state_dict)# 执行测试
test_result = model.evaluate(test_dataset)
print("测试集上指标:IoU为{:.2f},Acc为{:.2f},Kappa系数为{:.2f}, F1为{:.2f}".format(test_result['category_iou'][1], test_result['category_acc'][1],test_result['kappa'],test_result['category_F1-score'][1])
)
2024-09-05 20:07:40 [INFO]	13 samples in file /home/aistudio/massroad/test.txt
2024-09-05 20:07:41 [INFO]	Start to evaluate (total_samples=13, total_steps=13)...
测试集上指标:IoU为0.47,Acc为0.82,Kappa系数为0.62, F1为0.64

(八)预测结果可视化情况:

# 预测结果可视化
# 重复运行本单元可以查看不同结果def read_image(path):im = cv2.imread(path)return im[...,::-1]def show_images_in_row(ims, fig, title='', quantize=False):n = len(ims)fig.suptitle(title)axs = fig.subplots(nrows=1, ncols=n)for idx, (im, ax) in enumerate(zip(ims, axs)):# 去掉刻度线和边框ax.spines['top'].set_visible(False)ax.spines['right'].set_visible(False)ax.spines['bottom'].set_visible(False)ax.spines['left'].set_visible(False)ax.get_xaxis().set_ticks([])ax.get_yaxis().set_ticks([])if isinstance(im, str):im = read_image(im)if quantize:im = (im*255).astype('uint8')if im.ndim == 2:im = np.tile(im[...,np.newaxis], [1,1,3])ax.imshow(im)# 需要展示的样本个数
num_imgs_to_show = 4
# 随机抽取样本
chosen_indices = random.choices(range(len(test_dataset)), k=num_imgs_to_show)# 参考 https://stackoverflow.com/a/68209152
fig = plt.figure(constrained_layout=True)
fig.suptitle("Test Results")subfigs = fig.subfigures(nrows=3, ncols=1)# 读取输入影像并显示
im_paths = [test_dataset.file_list[idx]['image'] for idx in chosen_indices]
show_images_in_row(im_paths, subfigs[0], title='Image')# 获取模型预测输出
with paddle.no_grad():model.net.eval()preds = []for idx in chosen_indices:input, mask = test_dataset[idx]input = paddle.to_tensor(input["image"]).unsqueeze(0)logits, *_ = model.net(input)pred = paddle.argmax(logits[0], axis=0)preds.append(pred.numpy())
show_images_in_row(preds, subfigs[1], title='Pred', quantize=True)# 读取真值标签并显示
im_paths = [test_dataset.file_list[idx]['mask'] for idx in chosen_indices]
show_images_in_row(im_paths, subfigs[2], title='GT', quantize=True)# 渲染结果
fig.canvas.draw()
Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())

在这里插入图片描述
(九) 导出静态模型
训练后保存的模型为动态模型,布署发布模型为静态模型,因此需要导出操作

import matplotlib.pyplot as plt
import random
import cv2
import numpy as np
import paddle
import paddlers as pdrs
from PIL import Imageimport os
from paddlers.tasks import load_modelmodel_path =  './exp/best_model'img_14="i:/cwgis_ai/cup/mass_road/road_segmentation_ideal/testing/input/img-14.png"
img_10="i:/cwgis_ai/cup/mass_road/road_segmentation_ideal/testing/input/img-10.png"#save_dir="./models/road_infer_model_100"
save_dir="./models/road_infer_model_100_custom"# export model OK
# Set environment variables
os.environ['PADDLEX_EXPORT_STAGE'] = 'True'
os.environ['PADDLESEG_EXPORT_STAGE'] = 'True'# Load model from directory
model = load_model(model_path)#fixed_input_shape = None
#fixed_input_shape = [1500,1500]
fixed_input_shape = [17761,25006]      #[w,h]# Do dynamic-to-static cast   动态到静态的转换
# XXX: Invoke a protected (single underscore) method outside of subclasses.
model.export_inference_model(save_dir, fixed_input_shape)

(十) 预测单张图片代码

import matplotlib.pyplot as plt
import random
import cv2
import numpy as np
import paddle
import paddlers as pdrs
from PIL import Imageimport os
from paddlers.tasks import load_model# 因为`sys.path`可能没有及时更新,这里选择手动更新
import sys
sys.path.append('/home/aistudio/external-libraries')
sys.path.append('/home/aistudio/PaddleRS')img_14="./massroad/road_segmentation_ideal/testing/input/img-14.png"
img_10="./massroad/road_segmentation_ideal/testing/input/img-10.png"
img_5="./massroad/road_segmentation_ideal/testing/input/img-5.png"customImg="./customImage/DeepLearning_Image.png"    #file tif to png #model_dir="./models/road_infer_model_100"
#model_dir="./models/road_infer_model_100_None"
model_dir="./models/road_infer_model_100_custom"#model = pdrs.deploy.Predictor(model_dir)
model = pdrs.deploy.Predictor(model_dir,use_gpu=True)# 读取输入影像并显示
im_paths = [customImg]
im_lis = []
for name in im_paths:print(name)img = cv2.imread(name)      print(img.shape) #img = paddle.to_tensor(img) #.unsqueeze(0)   #标量输入im_lis.append(img)
# 获取模型预测输出img_file=img_10
preds = []
results = model.predict(im_lis)
#print(results)label_map=results[0]["label_map"]
#print(label_map)
label_map[label_map>0] = 255
cv2.imwrite('./outImage/label_map_custom.png', label_map)score_map=results[0]["score_map"]
#cv2.imwrite('./outImage/score_map.png', score_map[0])
print(score_map)print("预测完成")

本blog地址:https://blog.csdn.net/hsg77

http://www.lryc.cn/news/433747.html

相关文章:

  • 【 C++ 】C/C++内存管理
  • 智能客服的演变:从传统到向量数据库的新时代
  • python使用超级鹰识别验证码
  • 基于YOLO目标检测实现表情识别(结合计算机视觉与深度学习的创新应用)
  • Keil导入包出错
  • 超声波自动气象站
  • Mysql事件操作
  • Python必知必会:程序员必须知道的22个Python单行代码!
  • MongoDB 的适用场景
  • 汽车EDI:montaplast EDI对接
  • 【idea】设置文件模板
  • 时间戳和日期相互转换+检验日期合法性功能C语言
  • SPIRNGBOOT+VUE实现浏览器播放音频流并合成音频
  • C#绘制常用工业控件(仪表盘,流动条,开关等)
  • Ps:颜色模型、色彩空间及配置文件
  • llvm后端之td定义指令信息
  • 战地机房集装箱数据中心可视化:实时监控与管理
  • Linux入门攻坚——31、rpc概念及nfs和samba
  • 内网穿透的应用-本地化部署Elasticsearch平替工具OpenObserve并实现无公网IP远程分析数据
  • 哈希表 and 算法
  • Comsol 共用声固耦合边界与热粘性声学边界的亥姆霍兹腔体超材料板精准隔声设计
  • Linux系统本地化部署Dify并安装Ollama运行llava大语言模型详细教程
  • 极光出席深圳国际人工智能展并荣获“最具投资价值人工智能奖”
  • 人工智能领域的性能指的是什么
  • SQL进阶技巧:如何利用SQL解决趣味赛马问题?| 非等值关联匹配问题
  • Vue Echarts报错Initialize failed: invalid dom解决方法
  • MySQL—死锁
  • CS5363|CS5263升级方案|DP转HDMI 4K60HZ芯片方案
  • Git Lab 项目迁移到gitee 并且包含提交记录
  • 如何用用智能码二维码zhinengma.cn做空调机房巡检