当前位置: 首页 > news >正文

数学-快速幂

从一个简单的问题说起:

给出整数m,n和p,要求计算(m ^ n) % p的结果。

#include <iostream>
using namespace std;int main() {long long m, n, p;cin >> m >> n >> p;long long ans = 1;for (long long i = 0; i < n; i++) {ans = ans * m;}cout << ans << "\n";return 0;
}

 这个程序似乎正确了,但是存在严重问题:

<1>.m或n太大,极容易溢出.

<2>.如果n的值太大,时间消耗O(n)代价较大.

首先解决溢出的问题:

显然:

(a * b) % c = ((a  % c)  * (b % c)) % c.

这样,就可以把程序改写为如下形式:

但是,如果n的值太大,时间消耗O(n)代价太大,这个问题如何解决呢? 

#include <iostream>
using namespace std;int main() {long long m, n, p;cin >> m >> n >> p;long long ans = 1;for (long long i = 0; i < n; i++) {ans = ((ans % p) * (m % p)) % p;}cout << ans << "\n";return 0;
}

乘方快速幂:

假设要计算 m^10,m^10 = (m^5) ^ 2 = (m * (m ^ 2) ^ 2) ^ 2.

也就是说,要计算m ^ n,有: 

 那么,程序就变成了:

#include <iostream>
using namespace std;int main() {long long m, n, p;cin >> m >> n >> p;long long ans = 1;while (n) {if (n % 2 != 0) {ans = ((ans % p) * (m % p)) % p;}n = n / 2;m = ((m % p) * (m % p)) % p;}cout << ans << "\n";return 0;
}

但是,对于这个程序,我们仍可以继续对其优化:

首先介绍一下 按位与运算(&) 与 右移运算(>>):

<1>.按位与运算:

对于两个二进制数,它们按位与运算的结果是: 对于每一位,如果两个数的这一位同时为1,那么按位与的结果便是1,否则为0,最后将结果转化为十进制,就是我们想要的答案了。 对于一个整数,如果它是奇数,那么它的二进制表示的最低位为1,否则为0,那么对于奇数而言,其按位与1的结果是1,对于偶数而言,其按位与1的结果是0,由此我们可以通过判断一个整数按位与1的结果来判断其是偶数还是奇数.

<2>.右移运算:

同样是对2进制数进行处理,将所有位置上的数字右移,高位补0:如5:101,右移一位为010,结果是2。则:对于一个整数而言,右移一位,相当于其除以2并向下取整。

我们可以根据这两个运算来初步优化程序:

即将 n % 2 != 0 改为 n & 1 == 1,将 n = n / 2 改为 n = n >> 1.

#include <iostream>
using namespace std;int main() {long long m, n, p;cin >> m >> n >> p;long long ans = 1;while (n) {if (n & 1) {ans = ((ans % p) * (m % p)) % p;}n = n >> 1;m = ((m % p) * (m % p)) % p;}cout << ans << "\n";return 0;
}

对于m ^ 0,结果为1,1 % 1 == 0,所以,我们应该要防止这种特殊情况,即在进行乘方运算之前,先将ans % p: 

#include <iostream>
using namespace std;int main() {long long m, n, p;cin >> m >> n >> p;long long ans = 1 % p;while (n) {if (n & 1) {ans = ((ans % p) * (m % p)) % p;}n = n >> 1;m = ((m % p) * (m % p)) % p;}cout << ans << "\n";return 0;
}

因为C++内置的最高整数类型是64位,若运算 (a ^ b) % p中的三个变量a,b,p都在10^18级别,则不存在一个可供强制转化的128位整数类型,我们需要一些特殊的处理办法:

进行乘方运算之前,先让m对p取模一次: 

#include <iostream>
using namespace std;int main() {long long m, n, p;cin >> m >> n >> p;long long ans = 1 % p;m %= p;while (n) {if (n & 1) {ans = ((ans % p) * (m % p)) % p;}n = n >> 1;m = ((m % p) * (m % p)) % p;}cout << ans << "\n";return 0;
}

这样就是最优的形式了。 

下面给出几道相关的练习题: 

Raising Modulo Numbers

我们可以计算每一项a^b的值,然后将其加起来作为结果: 

#include <iostream>
#define i64 long longi64 qpow(i64 a, i64 b, i64 p) {i64 ans = 1 % p;a %= p;while (b) {if (b & 1) {ans = ((ans % p) * (a % p)) % p;}b >>= 1;a = ((a % p) * (a % p)) % p;}return ans;
}int main() {int t; std::cin >> t;while (t--) {i64 M;std::cin >> M;i64 H, ans = 0;std::cin >> H;for (int i = 0; i < H; i++) {i64 A, B;std::cin >> A >> B;ans = ((ans % M) + (qpow(A, B, M) % M)) % M;}std::cout << ans << "\n";}return 0;
}

Pseudoprime numbers

题意:

输入p 和 a,如果p不是质数,并且a>1并且(a^p) % p == a % p,那么输出yes,否则输出no

参考代码:

#include <iostream>
using namespace std;bool isprime(long long n) {if (n < 2) {return false;}for (int i = 2; i <= n / i; i++) {if (n % i == 0) {return false;}}return true;
}long long qpow(long long m, long long n, long long p) {long long ans = 1 % p;while (n) {if (n & 1) {ans = ((ans % p) * (m % p)) % p;}n = n >> 1;m = ((m % p) * (m % p)) % p;}return ans;
}int main() {long long p, a;while (cin >> p >> a && p && a) {if (isprime(p) == false && qpow(a, p, p) == a % p && a > 1) {cout << "yes\n";} else {cout << "no\n";}}return 0;
}

方阵快速幂: 

 

 

 

http://www.lryc.cn/news/43326.html

相关文章:

  • DevEco鸿蒙应用开发-第一个App
  • 又一款全新的基于 GPT4 的 Python 神器Cursor,关键还免费
  • CSS的浮动(下)
  • 软件测试-性能测试流程
  • 【python实操】年轻人,别用记事本保存数据了,试试数据库吧
  • 铁威马NAS教程之利用docker快速搭建个人在线书库
  • 504. 七进制数——【Leetcode每日一题】
  • RocketMQ源码(24)—DefaultMQPushConsumer延迟消息源码
  • 计算机视觉知识点(一)——交并比(IoU)及其若干改进
  • 一篇文章教你从零到一搭建自动化测试框架(附视频教程+源码)
  • 【备战蓝桥杯】----01背包问题(动态规划)
  • Golang1.18新特性介绍——泛型
  • 【SpringBoot17】SpringBoot中使用Quartz管理定时任务
  • 杨辉三角形 (蓝桥杯) JAVA
  • AI制药 - AlphaFold Multimer 的 MSA Pairing 源码
  • TitanIDE:云原生开发到底强在哪里?
  • 单片机常用完整性校验算法
  • Anaconda 的安装配置及依赖项的内外网配置
  • p84 CTF夺旗-PHP弱类型异或取反序列化RCE
  • 2022财报逆转,有赞穿透迷雾实现突破
  • 蓝桥杯 - 求组合数【C(a,b)】+ 卡特兰数
  • 膳食真菌在癌症免疫治疗中的作用: 从肠道微生物群的角度
  • 怎么将模糊的照片变清晰
  • 【软件测试】基础知识第一篇
  • 【百面成神】java web基础7问,你能坚持到第几问
  • Centos7安装、各种环境配置和常见bug解决方案,保姆级教程(更新中)
  • 【C++进阶】智能指针
  • 软件测试面试题 —— 整理与解析(3)
  • springboot常用的20个注解
  • USB组合设备——带鼠标功能的键盘