当前位置: 首页 > news >正文

直方图均衡化

概念

直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法,通过拉伸像素强度分布范围来增强图像对比度。

原理

  • 均衡化指的是把一个分布 (给定的直方图) 映射 到另一个分布 (一个更宽更统一的强度值分布),从而令强度值分布会在整个范围内展开。

  • 要想实现均衡化的效果,映射函数应该是一个 累积分布函数 ( cumulative distribution function, cdf ) 。对于直方图 H ( i ) H(i) H(i),它的累积分布函数 H ′ ( i ) H^{'}(i) H(i)

    H ′ ( i ) = ∑ j = 0 i H ( j ) H^{'}(i) = \sum_{j=0}^i H(j) H(i)=j=0iH(j)

    要使用其作为映射函数,我们必须对最大值为255 (或者用图像的最大强度值) 的累积分布 H ′ ( i ) H^{'}(i) H(i) 进行归一化。

  • 最后,我们使用一个简单的映射过程来获得均衡化后像素的强度值,假设原图为 I ( x , y ) I(x,y) I(x,y),均衡化后像素强度值 I ′ ( x , y ) I^{'}(x,y) I(x,y)

    I ′ ( x , y ) = H ′ ( I ( x , y ) ) I^{'}(x,y) = H^{'}(I(x,y)) I(x,y)=H(I(x,y))

代码实现

以 OpenCV 为例,其直方图均衡化函数为 equalizeHist(),代码实现如下:

/** @brief Equalizes the histogram of a grayscale image.The function equalizes the histogram of the input image using the following algorithm:- Calculate the histogram \f$H\f$ for src .
- Normalize the histogram so that the sum of histogram bins is 255.
- Compute the integral of the histogram:
\f[H'_i =  \sum _{0  \le j < i} H(j)\f]
- Transform the image using \f$H'\f$ as a look-up table: \f$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))\f$The algorithm normalizes the brightness and increases the contrast of the image.@param src Source 8-bit single channel image.
@param dst Destination image of the same size and type as src .*/
CV_EXPORTS_W void equalizeHist( InputArray src, OutputArray dst );void cv::equalizeHist( InputArray _src, OutputArray _dst )
{CV_INSTRUMENT_REGION();CV_Assert( _src.type() == CV_8UC1 );if (_src.empty())return;CV_OCL_RUN(_src.dims() <= 2 && _dst.isUMat(),ocl_equalizeHist(_src, _dst))Mat src = _src.getMat();_dst.create( src.size(), src.type() );Mat dst = _dst.getMat();CV_OVX_RUN(!ovx::skipSmallImages<VX_KERNEL_EQUALIZE_HISTOGRAM>(src.cols, src.rows),openvx_equalize_hist(src, dst))CALL_HAL(equalizeHist, cv_hal_equalize_hist, src.data, src.step, dst.data, dst.step, src.cols, src.rows);Mutex histogramLockInstance;const int hist_sz = EqualizeHistCalcHist_Invoker::HIST_SZ;int hist[hist_sz] = {0,};int lut[hist_sz];EqualizeHistCalcHist_Invoker calcBody(src, hist, &histogramLockInstance);EqualizeHistLut_Invoker      lutBody(src, dst, lut);cv::Range heightRange(0, src.rows);if(EqualizeHistCalcHist_Invoker::isWorthParallel(src))parallel_for_(heightRange, calcBody);elsecalcBody(heightRange);int i = 0;while (!hist[i]) ++i;int total = (int)src.total();if (hist[i] == total){dst.setTo(i);return;}float scale = (hist_sz - 1.f)/(total - hist[i]);int sum = 0;for (lut[i++] = 0; i < hist_sz; ++i){sum += hist[i];lut[i] = saturate_cast<uchar>(sum * scale);}if(EqualizeHistLut_Invoker::isWorthParallel(src))parallel_for_(heightRange, lutBody);elselutBody(heightRange);
}

应用举例

C++ 代码如下:

#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include <iostream>using namespace cv;
using std::cout;
using std::endl;int main(int argc, char** argv)
{CommandLineParser parser(argc, argv, "{@input | wukong.png | input image}");Mat src = imread(samples::findFile(parser.get<String>("@input")), IMREAD_COLOR);if (src.empty()){cout << "Could not open or find the image!\n" << endl;cout << "Usage: " << argv[0] << " <Input image>" << endl;return EXIT_FAILURE;}// 转换为灰度图像cvtColor(src, src, COLOR_BGR2GRAY);Mat dst;// 直方图均衡化equalizeHist(src, dst);imshow("Source image", src);imshow("Equalized Image", dst);waitKey();return EXIT_SUCCESS;}

Python 代码如下:

import cv2
import matplotlib.pyplot as plt# 读取图像
img = cv2.imread('../data/wukong.png', cv2.IMREAD_COLOR)
# 转换为灰度图
src = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 直方图均衡化
dst = cv2.equalizeHist(src)
# 显示原图和均衡化后的图
fig, axes = plt.subplots(2, 2, figsize=(18, 9))
axes[0, 0].imshow(src, cmap='gray')
axes[1, 0].imshow(dst, cmap='gray')
axes[0, 1].hist(src.ravel(), 256, [0, 256], color='#fc8403')
axes[1, 1].hist(dst.ravel(), 256, [0, 256], color='#fc8403')
# 显示直方图网格
axes[0, 1].grid(axis='y', linestyle='-.', alpha=0.5)
axes[1, 1].grid(axis='y', linestyle='-.', alpha=0.5)
# 设置标题
axes[0, 0].set_title('Original Image')
axes[1, 0].set_title('Equalized Image')
axes[0, 1].set_title('Histogram of Original Image')
axes[1, 1].set_title('Histogram of Equalized Image')
# 显示图表
plt.show()

直方图均衡化效果

http://www.lryc.cn/news/430302.html

相关文章:

  • Golang | Leetcode Golang题解之第342题4的幂
  • 数学建模学习(116):全面解析梯度下降算法及其在机器学习中的应用与优化
  • [mysql][sql]mysql查询表大小
  • 8.16 mysql主从数据库(5.7版本)与python的交互及mycat
  • 项目问题 | CentOS 7停止维护导致yum失效的解决办法
  • 【Docker】Docker Compose(容器编排)
  • 嵌入式初学-C语言-二九
  • 0x03 ShowDoc 文件上传漏洞(CNVD-2020-26585)复现
  • 【大模型从入门到精通34】开源库框架LangChain 利用LangChain构建聊天机器人1
  • 魔法糖果工厂
  • NVM安装管理node.js版本(简单易懂)
  • 第1章-04-Chrome及Chrome Driver安装及测试
  • 【Linux】SSH 隧道转发场景搭建
  • 前后端部署-服务器linux中安装数据库Mysql8
  • 如何使用jd-gui对springboot源码进行分析
  • 原来ChatGPT是这么评价《黑神话:悟空》的啊?
  • C语言第17篇
  • Springboot+vue实现webScoket
  • CSS知识点详解:display+float
  • ant design pro v6 如何做好角色管理
  • C++ 设计模式(3. 抽象工厂模式)
  • 【PHP入门教程】PHPStudy环境搭建+HelloWorld运行
  • 补 0 输出。
  • 因为嫌吵,在自己家也用上了远程控制电脑
  • vue---echarts环形图
  • 克服编程挫折:从Bug的迷宫中寻找出口与面对算法保持冷静的策略
  • Flink之SQL client使用案例
  • 实际开发中的模块化开发 - 应用到直播间
  • EmguCV学习笔记 VB.Net 第5章 图像变换
  • 【初阶数据结构】顺序表与链表的比较(附题)