当前位置: 首页 > news >正文

【计算机视觉】消融实验(Ablation Study)是什么?

文章目录

  • 一、前言
  • 二、定义
  • 三、来历
  • 四、举例说明

一、前言

我第一次见到消融实验(Ablation Study)这个概念是在论文《Faster R-CNN》中。

消融实验类似于我们熟悉的“控制变量法”。

假设在某目标检测系统中,使用了A,B,C,取得了不错的效果,但是这个时候你并不知道这不错的效果是由于A,B,C中哪一个起的作用,于是你保留A,B,移除C进行实验来看一下C在整个系统中所起的作用。

二、定义

Robert Long对消融研究(或消融实验)定义:

通常用于神经网络,尤其是相对复杂的神经网络,如R-CNN。我们的想法是通过删除部分网络并研究网络的性能来了解网络。

“消融”的原始含义是手术切除身体组织。

ablation解释: 通过机械方法切除身体组织,如手术,从身体中去除,尤指器官、异常生长或有害物质。

三、来历

“消融研究”这一术语的根源于20世纪60年代和70年代的实验心理学领域,其中动物的大脑部分被移除以研究其对其行为的影响。

在机器学习,特别是复杂的深度神经网络的背景下,已经采用“消融研究”来描述去除网络的某些部分的过程,以便更好地理解网络的行为。

自从Keras深度学习框架的主要作者Francois Chollet在2018年6月发布twtter以来,该术语受到了关注:

消融研究对于深度学习研究至关重要。理解系统中的因果关系是产生可靠知识的最直接方式(任何研究的目标)。消融是一种非常省力的方式来研究因果关系。

如果您采用任何复杂的深度学习实验设置,您可能会删除一些模块(或用随机的模块替换一些训练有素的功能)而不会降低性能。消除研究过程中的噪音:进行消融研究。

如果您无法完全理解您的系统?很多活动部件,想确定它的工作原因是否与您的假设密切相关?尝试删除东西。花费至少约10%的实验时间来诚实地反驳你的论文。

四、举例说明

Girshick及其同事描述了一个由三个“模块”组成的物体检测系统:

第一个使用选择性搜索算法提出图像区域,在该区域内搜索物体;

进入一个大的卷积神经网络(有5个卷积层和2个完全连接的层),进行特征提取;

进入一组支持向量机进行分类。

为了更好地理解该系统,作者进行了一项消融研究,其中系统的不同部分被移除。例如,移除CNN的一个或两个完全连接的层导致性能损失惊人地少。

这使作者得出结论:

CNN的大部分代表性力量来自其卷积层,而不是来自更大的密集连接层。
http://www.lryc.cn/news/42450.html

相关文章:

  • Java毕业论文参考文献参考例子整理
  • C++ Primer第五版_第六章习题答案(21~30)
  • SLAM算法之HectorSLAM,Gmapping,KartoSLAM,CoreSLAM和LagoSLAM
  • phpstorm断点调试
  • 做一个前端网页送给女朋友~轮播图+纪念日
  • CSDN 编程竞赛三十九期题解
  • ChatGPT来了你慌了吗?
  • Dijkstra 算法
  • EIgamal 算法实现与解读
  • 静态通讯录动态通讯录制作详解
  • 2023最新最详细【接口测试总结】
  • 【java基础】Stream流的各种操作
  • 【Python练习】序列结构
  • CDN加速缓存的定义与作用
  • Java并发高频面试题
  • CVPR 2023 | 旷视研究院入选论文亮点解读
  • Vue3 学习总结补充(一)
  • 使用ChatGPT 开放的 API 接口可以开发哪些自研工具?
  • I2C和SPI总线以及通信
  • Spring八股文
  • 20 k8sMetric 简介
  • 面试问了解Linux内存管理吗?10张图给你安排的明明白白
  • 【C++】内联函数inline
  • C++演讲比赛流程管理系统_黑马
  • 谈谈低代码的安全问题,一文全给你解决喽
  • [数据结构]二叉树OJ(leetcode)
  • flutter 输入时插入分隔符
  • 静态版通讯录——“C”
  • 前端基础开发环境搭建工具等
  • 华为OD机试题【IPv4 地址转换成整数】用 Java 解 | 含解题说明