当前位置: 首页 > news >正文

leetcode300. 最长递增子序列,动态规划附状态转移方程

leetcode300. 最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列 是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:
输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4 。

示例 2:
输入:nums = [0,1,0,3,2,3]
输出:4

示例 3:
输入:nums = [7,7,7,7,7,7,7]
输出:1

在这里插入图片描述

目录

  • leetcode300. 最长递增子序列
  • 子序列与子串的区别
    • 子序列(Subsequence)
    • 子串(Substring)
    • 总结
  • 最长递增子序列问题
    • 题目描述
    • 题目分析
    • 算法
    • 状态转移方程
      • 初始化
      • 遍历进行状态转移
      • 返回结果
    • 算法流程
    • 代码实现
    • 打表过程
    • 最终结果
    • 算法分析
    • 易错点
    • 相似题目

子序列与子串的区别

子序列(Subsequence)

  • 定义:一个给定序列的子序列是从原序列中在不改变序列顺序的情况下删除某些元素(也可以不删除任何元素)而形成的序列。
  • 特点
    • 不需要连续。
    • 保持元素的原有顺序。
  • 示例:对于序列 A = [5, 1, 22, 25, 6, -1, 8, 10][5, 22, 25][1, 6, -1] 都是它的子序列。

子串(Substring)

  • 定义:子串是指从原字符串中连续取出的一部分。
  • 特点
    • 必须连续。
    • 保持元素的原有顺序。
  • 示例:对于字符串 S = "abcdefg""abc""def" 都是它的子串。

总结

  • 主要区别:子序列不要求连续,而子串必须是连续的。

最长递增子序列问题

题目描述

给定一个整数数组,找到最长的递增子序列的长度。

题目分析

这是一个经典的动态规划问题。我们可以通过计算以每个元素为结尾的最长递增子序列的长度来最终得到整个数组的最大递增子序列长度。

算法

状态转移方程

  • 定义dp[i] 表示以 nums[i] 为结尾的最长递增子序列的长度。
  • 转移方程dp[i] = max(dp[i], dp[j] + 1),其中 0 <= j < inums[i] > nums[j]
  • 解释
    • 如果 nums[i] 大于 nums[j],那么 nums[i] 可以加到以 nums[j] 结尾的递增子序列的末尾,形成一个新的更长递增子序列。
    • 因此,我们需要更新以 nums[i] 结尾的最长递增子序列的长度。
    • max(dp[i], dp[j] + 1) 确保了对于每个 nums[i],我们选择一个最优的 dp[j] 来形成新的递增子序列。

初始化

  • dp[i] = 1,因为任何单个元素自身都是一个递增子序列。

遍历进行状态转移

  • 遍历数组,对于每个元素 nums[i],再遍历其之前的所有元素 nums[j],如果 nums[i] > nums[j],则更新 dp[i]

返回结果

  • 返回 dp 数组中的最大值,即为最长递增子序列的长度。

算法流程

开始
初始化dp数组
遍历i从1到n-1
遍历j从0到i-1
更新dp i
更新结果
结束

代码实现

class Solution {
public:int lengthOfLIS(vector<int>& nums) {int n = nums.size();if (n == 1) return 1;int result = 0;vector<int> dp(n, 1);for (int i = 1; i < n; i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) {dp[i] = max(dp[j] + 1, dp[i]);}}result = max(result, dp[i]);}return result;}
};

打表过程

在这里插入图片描述

最终结果

  • 最长递增子序列长度为 4,对应于 dp[7]

算法分析

  • 时间复杂度:O(n^2),因为我们需要遍历数组中的每个元素,对于每个元素,我们又需要遍历其之前的所有元素。
  • 空间复杂度:O(n),用于存储 DP 数组。

易错点

  • 注意在遍历时正确应用状态转移方程。
  • 确保在更新 dp[i] 时考虑所有可能的 dp[j]

相似题目

题目链接
最长连续递增序列LeetCode 674
俄罗斯套娃信封问题LeetCode 354
最长公共子序列LeetCode 1143
http://www.lryc.cn/news/423260.html

相关文章:

  • C语言:字符串函数strcpy
  • Day16-指针2
  • 数据结构(5.5_3)——并查集的进一步优化
  • (回溯) LeetCode 131. 分割回文串
  • 【Linux】阻塞信号|信号原理|深入理解捕获信号|内核态|用户态|sigaction|可重入函数|volatile|SIGCHILD|万字详解
  • 基于Linux对 【进程地址空间】的详细讲解
  • [python]使用Pandas处理多个Excel文件并汇总数据
  • 提升体验:UI设计的可用性原则
  • x264 编码器 SSIM 算法源码分析
  • echarts使图表组件根据屏幕尺寸变更而重新渲染大小
  • 电脑图片损坏打不开怎么办?能修复吗?
  • vue-cli(二)
  • 今日头条的账号id在哪里看(网页版)
  • 单体应用提高性能和高并发处理-合理使用多核处理
  • 基于STM32/GD32的双CAN、一路485开发板
  • 快排/堆排/归并/冒泡/
  • React基础教程(08):state体验
  • Win10 创建新的桌面2,并实现桌面切换
  • MySQL数据库介绍及基础操作
  • 【C语言篇】C语言常考及易错题整理DAY2
  • javase入门
  • Wireshark显示过滤器大全:快速定位网络流量中的关键数据包
  • OOP笔记4----抽象类、接口、枚举
  • MySQL面试题全解析:准备面试所需的关键知识点和实战经验
  • 01_Electron 跨平台桌面应用开发介绍
  • 【C语言-扫雷游戏】mineweeper【未完成】
  • psychopy stroop 实验设计
  • c++精品小游戏(无错畅玩版)
  • 应急响应-主机安全之系统及进程排查相关命令(Linux操作系统-初级篇)
  • java中RSA分段加解密及Data must not be longer than异常处理