当前位置: 首页 > news >正文

蓝桥杯双周赛 第 16 场 小白入门赛 解题报告 | 珂学家 | 七夕娱乐场


前言

在这里插入图片描述


题解

因为这场七夕节,所以出的特别友好。

整体还是偏思维。

T6 额外提供组合数学解,还是蛮有趣的。


A. 喜鹊罢工

题型: 签到

365 可以有多少个 7 组成 365可以有多少个7组成 365可以有多少个7组成

向上取整即可

#include <iostream>using namespace std;int main()
{cout << ((365 + 6) / 7) << endl;return 0;
}

B. 牛郎取名

思路: 模拟

对字符进行按序重排,考察字符串API知识点。

#include <bits/stdc++.h>using namespace std;int main()
{int n;string s;cin >> n >> s;string r;for (int i = 0; i < n; i++) {int p; cin >> p;r.push_back(s[p - 1]);}cout << r << endl;return 0;
}

C. 织女的考验

思路: 找规律

可以把字符串拍平为 26维的向量

那么两个字符串能否相等(彼此各删除1个字符),在于这2个向量 差异 要么为0,要么为2

d i f f = ∑ i = 0 i = 25 a b s ( v 1 ( i ) − v 2 ( i ) ) diff = \sum_{i=0}^{i=25} abs(v_1(i) - v_2(i)) diff=i=0i=25abs(v1(i)v2(i))

这样的时间复杂度为 O ( n + 26 ) O(n+26) O(n+26)

#include <bits/stdc++.h>using namespace std;int main()
{int t;cin >> t;while (t-- > 0) {string s1, s2;cin >> s1 >> s2;// 向量化vector<int> h1(26), h2(26);for (char c: s1) h1[c - 'a']++;for (char c: s2) h2[c - 'a']++;// 求向量差int diff = 0;for (int i = 0; i < 26; i++) {diff += abs(h1[i] - h2[i]);}if (diff == 0 || diff == 2) {cout << "YES\n";} else {cout << "NO\n";}}return 0;
}

当然这题,也可以大模拟,在构建26维向量后,枚举去掉的字符

然后对比是否相同


D. 仙男仙女

思路: 模拟

需要注意的是,给出的坐标并不是按序的,需要额外排序下。

然后模拟即可,即比对前一位/后一位的差值。

#include <bits/stdc++.h>using namespace std;int main()
{int n;cin >> n;vector<array<int, 2>> arr(n);for (int i = 0; i < n; i++) {cin >> arr[i][0];}for (int i = 0; i < n; i++) {cin >> arr[i][1];}sort(arr.begin(), arr.end());int res = 0;for (int i = 0; i < n; i++) {bool c1 = (i == 0 || arr[i][0] - arr[i - 1][0] > arr[i][1]);bool c2 = (i == n - 1 || arr[i + 1][0] - arr[i][0] > arr[i][1]);if (c1 && c2) {res++;}}cout << res << endl;return 0;
}

E. 牛郎的微信群

思路: 思维题

  • 距离为1,就是节点的度
  • 距离为2, 就是节点u的相邻节点度总和 - 节点u的度

那这样求解,会不会遇到复杂度问题,比如菊花图等

不会,因为它是一个树结构,并不是一个完全图形态

它的枚举量为 O ( V ∗ 2 ) , V 为边数 {O(V * 2) , V为边数} O(V2),V为边数

#include <bits/stdc++.h>
using namespace std;int main()
{int n;cin >> n;vector<vector<int>> g(n);for (int i = 0; i < n - 1; i++) {int u, v;cin >> u >> v;u--; v--;g[u].push_back(v);g[v].push_back(u);}vector<int> res(n);for (int i = 0; i < n; i++) {for (int v: g[i]) {res[i] += g[v].size();}res[i] -= g[i].size();}for (int i = 0; i < n; i++) {cout << res[i] << " \n"[i == n - 1];}return 0;
}

F. 久别重逢

方法一:前缀和优化的DP

令dp[j] 为 以j结尾的方案数

d p [ j ] = ∑ i = 0 i = j − k d p [ i ] dp[j] = \sum_{i=0}^{i=j-k} dp[i] dp[j]=i=0i=jkdp[i]

公式转移代价为k,但是 n , k ≤ 1 0 5 n, k \le 10^5 n,k105, 所以必须加以优化

这边可以简单地使用前缀和优化,因为只有一侧有限制,控制右侧边界即可。

如果两侧有限制,则需要额外引入双端队列。

#include <bits/stdc++.h>
using namespace std;const int64_t mod = (int64_t)1e9 + 7;int main()
{int n, k;cin >> n >> k;int64_t res = 1;int64_t acc = 0;vector<int64_t> dp(n + 1);dp[0] = 1;for (int i = k; i <= n; i++) {acc = (acc + dp[i - k]) % mod;dp[i] = acc;res = (res + dp[i]) % mod;}cout << res << endl;return 0;
}

题外话:

方法二:组合数学

其实我一开始想到的是,枚举步数x,然后采用组合数学的方式来计算.

利用插板法,固定步数为x,接下来枚举y, y ∈ [ 0 , ( n − k x ) ] y \in [0, (n-kx)] y[0,(nkx)]

∑ y = 0 y = n − k x C ( y + x − 1 , y − 1 ) = C ( n − k x + x , x ) = C ( n − ( k − 1 ) ∗ x , x ) \sum_{y=0}^{y=n-kx} C(y+x-1, y-1) = C(n-kx+x, x) = C(n - (k-1)*x, x) y=0y=nkxC(y+x1,y1)=C(nkx+x,x)=C(n(k1)x,x)

然后在枚举x

最终结果为

∑ x = 0 x = n / k C ( n − ( k − 1 ) ∗ x , x ) \sum_{x=0}^{x=n/k} C(n - (k-1)*x, x) x=0x=n/kC(n(k1)x,x)

#include <bits/stdc++.h>
using namespace std;int64_t ksm(int64_t b, int64_t v, int64_t mod) {int64_t r = 1l;while (v > 0) {if (v % 2 == 1) r = r * b % mod;b = b * b % mod;v /= 2;}return r;
}int main()
{int n, k;cin >> n >> k;// 组合数计算const int64_t mod = (int64_t)1e9 + 7;vector<int64_t> fac(n + 1);vector<int64_t> inv(n + 1);fac[0] = 1;for (int i = 1; i <= n; i++) {fac[i] = fac[i - 1] * i % mod;}inv[n] = ksm(fac[n], mod - 2, mod);for (int i = n - 1; i >= 0; i--) {inv[i] = inv[i + 1] * (i + 1) % mod;}int64_t res = 0;    for (int i = 0; i * k <= n; i++) {int r = n - i * k;// C(r+i, i)res += fac[r + i] * inv[i] % mod * inv[r] % mod;res %= mod;}cout << res << endl;return 0;
}

写在最后

在这里插入图片描述

http://www.lryc.cn/news/420865.html

相关文章:

  • [C++] 深入理解面向对象编程特性 : 继承
  • 汇昌联信科技做拼多多电商怎么引流?
  • 公网ip和私网ip的区别
  • 【开发踩坑】windows查看jvm gc信息
  • 时间序列预测 | CEEMDAN+CNN+Transformer多变量时间序列预测(Python)
  • vue3--实现vue2插件JSONPathPicker的路径获取功能
  • SuccBI+低代码文档中心 — 可视化分析(仪表板)(上)
  • P3156 【深基15.例1】询问学号
  • 详解Xilinx FPGA高速串行收发器GTX/GTP(5)--详解8B10B编解码
  • python 画多盘的写放大曲线方法
  • 计算机网络TCP/UDP知识点
  • JavaScript 文档元素获取
  • docker pull实现断点续传
  • 无字母数字webshell之命令执行
  • 华为OD笔试
  • HAProxy理论+实验
  • Spring Boot ⽇志
  • 最详细!教你学习haproxy七层代理
  • ElementUI 事件回调函数传参技巧与自定义参数应用
  • 优化Next的webpack配置
  • Q-Dir vs 传统文件管理器:为何开发者更偏爱这款神器?
  • 日常疑问小记录
  • Java Web —— 第四天(HTTP协议,Tomcat)
  • C++ list的基本使用
  • 云中韧性:Spring Cloud服务调用重试机制深度解析
  • 83.SAP ABAP从前台找字段所在表的两种方法整理笔记
  • docker为普通用户设置sudo权限
  • Nginx + PHP 8.0支持视频上传
  • MySQL基础详解(3)
  • 傅里叶变换结合数学形态学进行边缘增强和边缘提取