当前位置: 首页 > news >正文

【独家原创】基于APO-Transformer-LSTM多特征分类预测(多输入单输出)Matlab代码

【独家原创】基于APO-Transformer-LSTM多特征分类预测(多输入单输出)Matlab代码

目录

    • 【独家原创】基于APO-Transformer-LSTM多特征分类预测(多输入单输出)Matlab代码
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述

在这里插入图片描述

基本描述

[24年最新算法] [ 独家原创]基于APO-Transformer-L STM多特征分类预测(多 输入单输出) Matlab代码,北极海鹦优化算法(APO);发表在SCI二区期刊《Advances in
Engineering Software》;发表时间为2024年9月(见刊)。
[独家原创] APO-Transformer-L STM分类Matlab代码基于北极海鹦优化算法优化Transformer结合长短期记忆神经网络,Matlab代码, 可直接运行,适合小白新手。
1.程序已经调试好,无需更改代码替换数据集即可运行! ! !数据格式为excel!
2.Transformer作为一-种创新的神经网络结构,深受欢迎。采用Transformer编码器对光伏、负荷数据特征间的复杂关系以及时间序列中的长短期依赖关系进行挖掘,可以提高光伏功率、负荷预测的准确性。
3.APO作为24年新算法,北极海鹦优化算法(Arctic Puffin Optimization, APO)是一种新型的元启发式算法(智能优化算法),模拟了北极海鹦的空中飞行和水下觅食行为。这个算法夹杂了许多策略,发表的期刊等级也比较高,值得一-试! 该成果由Wen-chuan Wang等人于2024年9月发表在SCI二区期刊《Advances in Engineering Software》.上目前没人用, 需要论文的抓紧了!这就是机会!
1、运行环境要求MATLAB版本为2023b及其以 上。[ 如果没有可私信我,我赠送]
2、代码中文注释清晰,质量极高
3、运行结果图包括分类效果图,迭代优化图,混淆矩阵图等.

在这里插入图片描述

注:程序和数据放在一个文件夹。

程序设计

  • 完整程序和数据私信博主回复基于APO-Transformer-LSTM多特征分类预测(多输入单输出)Matlab代码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('数据集.xlsx');%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)
outdim = 1;                                  % 最后一列为输出
f_ = size(res, 2) - outdim;                  % 输入特征维度
%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];%%  划分数据集
for i = 1 : num_classmid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本mid_size = size(mid_res, 1);                    % 得到不同类别样本个数mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end%%  得到训练集和测试样本个数
M = size(P_train, 1);
N = size(P_test , 1);%% 数据预处理
% 数据预处理,将训练集和测试集归一化到[0,1]区间
[mtrain,ntrain] = size(P_train);
[mtest,ntest] = size(P_test);
dataset = [P_train;P_test];
% mapminmax为MATLAB自带的归一化函数
[dataset_scale,ps] = mapminmax(dataset',0,1);
dataset_scale = dataset_scale';
P_train = dataset_scale(1:mtrain,:);
P_test = dataset_scale( (mtrain+1):(mtrain+mtest),: );

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

http://www.lryc.cn/news/418094.html

相关文章:

  • 【大模型】大模型指令微调的“Prompt”模板
  • Spring的设计模式----工厂模式及对象代理
  • 【算法】浅析广度优先搜索算法
  • 分布式时序数据库TimeLyre 9.2发布:原生多模态、高性能计算、极速时序回放分析
  • PMP考试题库每日五题+答案解析
  • 机器学习用python还是R,哪个更好?
  • 【数据结构】mapset详解
  • 数据结构(邓俊辉)学习笔记】词典 02—— 散列函数
  • Python学习(1):使用Python的Dask库实现并行计算
  • 数据结构 - 哈希表
  • 电商选品这几点没做好,等于放弃80%的流量!
  • 【教程】最新可用!Docker国内镜像源列表
  • 使用RabbitMQ在Spring Boot入门实现简单的消息的发送与接收
  • 基于物联网的水质监测系统设计与实现:React前端、Node.js后端与TCP/IP协议的云平台集成(代码示例)
  • Vcpkg安装指定版本包或自定义安装包
  • 【C++深度探索】红黑树实现Set与Map的封装
  • 终于有人把客户成功讲明白了
  • [新械专栏] 肾动脉射频消融仪及一次性使用网状肾动脉射频消融导管获批上市
  • leetcode-119-杨辉三角II
  • 【第八节】python正则表达式
  • 三大浏览器Google Chrome、Edge、Firefox内存占用对比
  • 【wiki知识库】08.添加用户登录功能--后端SpringBoot部分
  • vue中nextTick的作用
  • 计算机网络面试-核心概念-问题理解
  • go语言创建协程
  • RabbitMQ之基于注解声明队列交换机:使用@RabbitListener实现消息监听
  • 【grafana 】mac端grafana配置的文件 grafana.ini 及login
  • 程序员如何在人工智能时代保持核心竞争力
  • 回溯排列+棋盘问题篇--代码随想录算法训练营第二十三天| 46.全排列,47.全排列 II,51. N皇后,37. 解数独
  • ESXI加入VMware现有集群提示常规性错误