当前位置: 首页 > news >正文

回溯排列+棋盘问题篇--代码随想录算法训练营第二十三天| 46.全排列,47.全排列 II,51. N皇后,37. 解数独

46.全排列

题目链接:. - 力扣(LeetCode)

讲解视频:

组合与排列的区别,回溯算法求解的时候,有何不同?

题目描述:

给定一个不含重复数字的数组 nums ,返回其 所有可能的全排列 。你可以 按任意顺序 返回答案。

示例 1:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

示例 2:

输入:nums = [0,1]
输出:[[0,1],[1,0]]

示例 3:

输入:nums = [1]
输出:[[1]]

解题思路:

与前边的组合,分割问题不同在于全排列问题每次递归至下一层后都要从头开始遍历。使用一个used数组进行去重,判断当前元素是否已经被使用

代码:

class Solution {
public:vector<vector<int>> result;vector<int> path;void backTracking(vector<int>& nums, vector<int>& used){if(path.size() == nums.size()) {result.push_back(path);return;}for(int i = 0; i < nums.size(); i++){if(used[i] == 0){used[i] = 1;path.push_back(nums[i]);backTracking(nums,used);path.pop_back();used[i] = 0;}}}vector<vector<int>> permute(vector<int>& nums) {result.clear();path.clear();vector<int> used(nums.size(), 0);backTracking(nums,used);return result;}
};

47.全排列 II

题目链接:. - 力扣(LeetCode)

讲解视频:

回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II

题目描述:

给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。

示例 1:

输入:nums = [1,1,2]
输出:
[[1,1,2],[1,2,1],[2,1,1]]

示例 2:

输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

解题思路:

先对nums数组排序,去重逻辑:

  1. 横向去重:使用used数组对同层元素进行判断,若前后元素相同且前一个元素used值为0(表明当前遍历是同层遍历),就说明该元素已经被使用,跳过这个元素;
  2. 纵向去重:每次递归至下一层后都要从头开始遍历。使用同一个used数组进行去重,判断当前元素是否已经被使用

代码:

class Solution {
public:vector<vector<int>> result;vector<int> path;void backTracking(vector<int>& nums,vector<int>& used){if(path.size() == nums.size()) {result.push_back(path);return;}for(int i = 0; i < nums.size(); i++){if(i > 0 && nums[i] == nums[i-1] && used[i-1] == 0) continue;if(used[i] == 0){path.push_back(nums[i]);used[i] = 1;backTracking(nums,used);used[i] = 0;path.pop_back();}}}vector<vector<int>> permuteUnique(vector<int>& nums) {result.clear();path.clear();sort(nums.begin(),nums.end());vector<int> used(nums.size(),0);backTracking(nums,used);return result;}
};

51. N皇后

题目链接:. - 力扣(LeetCode)

讲解视频:

这就是传说中的N皇后? 回溯算法安排!| LeetCode:51.N皇后

题目描述:

按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。

给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。

每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 'Q' 和 '.' 分别代表了皇后和空位。

示例 1:

输入:n = 4
输出:[[".Q..","...Q","Q...","..Q."],["..Q.","Q...","...Q",".Q.."]]
解释:如上图所示,4 皇后问题存在两个不同的解法。

解题思路:

N皇后问题步骤:

  1. 按行遍历,对每一行中每一个位置做判断,看当前棋盘布局是否符合条件;
  2. 判断标准:同一行,同一列,对角线(45°,135°)均不能存在2个及以上的Q;
  3. 若所有行均遍历完成,就把结果保存至result中,并返回。

 

代码:

class Solution {
public:vector<vector<string>> result;bool isValid(vector<string>& chessboard, int row, int col, int n){for(int i = 0; i < row; i++) // 判断列if(chessboard[i][col] == 'Q') return false;for(int i = row - 1, j = col - 1; i >= 0 && j >= 0; i--,j--) //对角45°if(chessboard[i][j] == 'Q') return false;for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--,j++) //对角135°if(chessboard[i][j] == 'Q') return false;return true;}void backTracking(vector<string>& chessboard, int row, int n){if(row == n){result.push_back(chessboard);return;}for(int col = 0; col < n; col++){if(isValid(chessboard,row,col,n)){chessboard[row][col] = 'Q';backTracking(chessboard,row+1,n);chessboard[row][col] = '.';}}}vector<vector<string>> solveNQueens(int n) {vector<string> chessboard(n,string(n,'.'));backTracking(chessboard,0,n);return result;}
};

37. 解数独

题目链接:. - 力扣(LeetCode)

讲解视频:

回溯算法二维递归?解数独不过如此!| LeetCode:37. 解数独

题目描述:

编写一个程序,通过填充空格来解决数独问题。

数独的解法需 遵循如下规则

  1. 数字 1-9 在每一行只能出现一次。
  2. 数字 1-9 在每一列只能出现一次。
  3. 数字 1-9 在每一个以粗实线分隔的 3x3 宫内只能出现一次。(请参考示例图)

数独部分空格内已填入了数字,空白格用 '.' 表示。题目数据 保证 输入数独仅有一个解

示例 1:

输入:board = [["5","3",".",".","7",".",".",".","."],["6",".",".","1","9","5",".",".","."],[".","9","8",".",".",".",".","6","."],["8",".",".",".","6",".",".",".","3"],["4",".",".","8",".","3",".",".","1"],["7",".",".",".","2",".",".",".","6"],[".","6",".",".",".",".","2","8","."],[".",".",".","4","1","9",".",".","5"],[".",".",".",".","8",".",".","7","9"]]
输出:[["5","3","4","6","7","8","9","1","2"],["6","7","2","1","9","5","3","4","8"],["1","9","8","3","4","2","5","6","7"],["8","5","9","7","6","1","4","2","3"],["4","2","6","8","5","3","7","9","1"],["7","1","3","9","2","4","8","5","6"],["9","6","1","5","3","7","2","8","4"],["2","8","7","4","1","9","6","3","5"],["3","4","5","2","8","6","1","7","9"]]
解释:输入的数独如上图所示,唯一有效的解决方案如下所示:

解题思路:

该题目与N皇后问题的区别在于:

  1. 解数独问题中只要找到一个解即可,回溯函数类型为bool。N皇后问题找到所有解,回溯函数类型为void;
  2. 解数独问题使用二维数组遍历。N皇后问题使用一维数组遍历。
  3. 解数独问题中每一个格中从1~9中判断。N皇后问题每一个格只从Q判断
  4. 解数独问题判断条件:同行同列不能有重复元素,3x3宫内不能有重复元素

代码:

class Solution {
public:bool isValid(int row, int col, int k, vector<vector<char>>& board){for(int i = 0; i < board[0].size(); i++) //判断行if(i != col && board[row][i] == k) return false; for(int i = 0; i < board.size(); i++) //判断列if(i != row && board[i][col] == k) return false; for(int i = row - row % 3; i < row - row % 3 + 3; i++)for(int j = col - col % 3; j < col - col%3 + 3; j++)if(i != row && j != col && board[i][j] == k) return false;return true;}bool backTracking(vector<vector<char>>& board){for(int i = 0; i < board.size(); i++){for(int j = 0; j < board[0].size(); j++){if(board[i][j] == '.'){for(char k = '1'; k <= '9'; k++){if(isValid(i,j,k,board)){board[i][j] = k;if(backTracking(board)) return true;board[i][j] = '.';}}return false;}}}return true;}void solveSudoku(vector<vector<char>>& board) {backTracking(board);}
};

http://www.lryc.cn/news/418065.html

相关文章:

  • ESXI加入VMware现有集群提示常规性错误
  • 数字噪音计(声级计)【AR814数字噪音计】
  • 【Vue3】图片未加载成功前占位
  • AbstractQueuedSynchronizer之AQS
  • <数据集>起重机识别数据集<目标检测>
  • 04--Docker
  • MiniCPM-V: A GPT-4V Level MLLM on Your Phone 手机上的 GPT-4V 级多模态大模型
  • Unity初识
  • 【游戏引擎之路】登神长阶(九)——《3D游戏编程大师技巧》:我想成为游戏之神!
  • Linux:线程同步之信号量
  • GPT-SoVITS-文本转语音(你的声音不再是唯一)
  • C语言深度剖析(部分)--剩下随缘更新
  • 计算机毕业设计选题推荐-电缆行业生产管理系统-Java/Python项目实战
  • Linux 下查看 CPU 使用率
  • 数理基础知识
  • Java解决lombok和mapstruct编译模块的问题
  • 大模型场景应用全集:持续更新中
  • 理解RabbitMQ中的消息存储机制:非持久化、持久化与惰性队列(Lazy Queue)
  • 【机器学习】BP神经网络正向计算
  • 谷粒商城实战笔记-108~109-elasticsearch删除与批量导入
  • RabbitMQ:发送者的可靠性之使用消息确认回调
  • HCIP学习 | OSPF---LSA限制、不规则区域、附录E、选路
  • CVE-2017-15715~Apache解析漏洞【春秋云境靶场渗透】
  • thinkphp 5.0.24生成模块
  • 值得注意!家里有带毛发动物就有浮毛?宠物空气净化器一键净化
  • Linux 代理(proxy)设置
  • 操作系统真相还原:获取文件属性
  • 聚鼎装饰画:投资一家装饰画店铺要花费多少钱
  • 编程的魅力、其重要性、学习方法以及未来趋势
  • ubuntu init set