当前位置: 首页 > news >正文

学习记录(11):训练图片分类的算法


文章目录

  • 一、卷积神经网络(CNN)架构
    • 1. ResNet(Residual Networks)
    • 2. DenseNet(Densely Connected Convolutional Networks)
    • 3. EfficientNet
    • 4. MobileNet
  • 二、变换器(Transformer)架构
    • 1. Vision Transformer(ViT)
    • 2. Swin Transformer
  • 三、混合架构
    • 1. ConvNeXt
    • 2. CoAtNet(Convolutional Attention Network)
  • 四、自监督学习和对比学习
    • 1. SimCLR(Simple Framework for Contrastive Learning of Visual Representations)
    • 2. BYOL(Bootstrap Your Own Latent)
  • 五 、大规模预训练学习
    • 1. CLIP(Contrastive Language–Image Pretraining)
    • 2. DINO(Self-Distillation with No Labels)


一、卷积神经网络(CNN)架构

1. ResNet(Residual Networks)

特点:引入了残差连接(skip connections),解决了深层网络中的梯度消失问题。
代表模型:ResNet-50、ResNet-101、ResNet-152。
优势:在ImageNet等大型数据集上表现优异,训练稳定。

2. DenseNet(Densely Connected Convolutional Networks)

特点:每一层都与前面的所有层直接连接,增强了特征复用。
代表模型:DenseNet-121、DenseNet-169、DenseNet-201。
优势:参数更少,特征传递和梯度流动更好。

3. EfficientNet

特点:通过复合缩放方法(compound scaling)系统地缩放网络的深度、宽度和分辨率。
代表模型:EfficientNet-B0到EfficientNet-B7。
优势:在参数量和计算量较少的情况下,达到了更高的准确率。

4. MobileNet

特点:设计轻量级网络,适用于移动和嵌入式设备。
代表模型:MobileNetV1、MobileNetV2、MobileNetV3。
优势:计算效率高,适合资源受限的环境。

二、变换器(Transformer)架构

1. Vision Transformer(ViT)

特点:将图像分割成固定大小的patches,然后将这些patches作为输入序列,使用标准的Transformer架构进行处理。
优势:在大规模数据集上训练时,能够达到或超过传统CNN的性能。

2. Swin Transformer

特点:引入了层次化的窗口注意力机制,能够在不同尺度上捕捉图像特征。
优势:在多个视觉任务中表现出色,包括图像分类、目标检测和语义分割。

三、混合架构

1. ConvNeXt

特点:结合了CNN和Transformer的优点,采用了现代化的设计理念,如LayerNorm、GELU激活函数等。
优势:在保持CNN高效性的同时,提升了模型的性能。

2. CoAtNet(Convolutional Attention Network)

特点:结合了卷积和注意力机制,利用卷积捕捉局部特征,利用注意力机制捕捉全局特征。
优势:在多个视觉任务中表现优异,具有较好的泛化能力。

四、自监督学习和对比学习

1. SimCLR(Simple Framework for Contrastive Learning of Visual Representations)

特点:通过对比学习方法,在没有标签的数据上进行预训练,然后在有标签的数据上进行微调。
优势:能够在没有大量标注数据的情况下,学习到高质量的特征表示。

2. BYOL(Bootstrap Your Own Latent)

特点:通过自我监督学习方法,不需要负样本对,直接优化特征表示。
优势:在多个数据集上表现出色,训练稳定。

五 、大规模预训练学习

1. CLIP(Contrastive Language–Image Pretraining)

特点:通过对比学习,将图像和文本嵌入到同一个向量空间中,能够处理多模态任务。
优势:在多个下游任务中表现优异,包括图像分类、图像生成、文本生成等。

2. DINO(Self-Distillation with No Labels)

特点:通过自监督学习方法,利用教师-学生模型进行特征提取。
优势:在没有标签的数据上进行预训练,然后在有标签的数据上进行微调,表现出色。

总结
目前,图像分类领域的最先进算法主要集中在深度学习模型,特别是卷积神经网络(CNN)和变换器(Transformer)架构上。选择合适的模型需要根据具体的应用场景、数据规模、计算资源等因素来决定。对于大规模数据集和高性能需求,可以考虑使用Vision Transformer(ViT)或Swin Transformer等变换器架构;对于资源受限的环境,可以考虑使用MobileNet或EfficientNet等轻量级模型。

http://www.lryc.cn/news/416383.html

相关文章:

  • 上网防泄密,这些雷区不要碰!九招教你如何防泄密
  • 数据库篇--八股文学习第十五天| 一条SQL查询语句是如何执行的?,事务的四大特性有哪些?,数据库的事务隔离级别有哪些?
  • elk + filebeat + kafka实验和RSync同步
  • 子类到底能继承父类中的哪些内容?
  • 【超详细公式】曝光值(EV)、光圈(AV)、快门(TV)、感光度(SV)、照度(Lux)
  • 【Java】增强for遍历集合。
  • 【Qt】管理创建子项目
  • 力扣——238.移动零
  • 编程的魅力
  • 想提升跨境电商运营?浏览器多开为你助力!
  • 使用QML的ListView自制树形结构图TreeView
  • 2.MySQL面试题之索引
  • 复制CodeIgniter新版的array_group_by辅助函数
  • 合并两个 ES (Elasticsearch) 的数据
  • Linux网络协议.之 tcp,udp,socket网络编程(四).之网络转换函数htonl,ntohs等介绍
  • LXC和udev知识点
  • 基于springboot+vue+uniapp的智慧校园管理系统小程序
  • 论文辅导 | 基于概率密度估计与时序Transformer网络的风功率日前区间预测
  • 金蝶云星空单据体数量汇总-分组列信息
  • 树状数组基础知识以及相关习题
  • 2023大数据-架构师案例(八)
  • 【Python】Python:探索未来科技的风向标
  • Java语言程序设计——篇十一(6)
  • 2024年有哪些好用的文件加密软件?十款常用加密软件推荐
  • 书生大模型学习笔记3 - 书生开源大模型链路体系
  • 【竞技宝】奥运会:法国国奥淘汰埃及国奥晋级决赛
  • C++的STL简介(四)
  • NIO专题学习(一)
  • Linux学习笔记:Linux基础知识汇总(个人复习版)
  • MSR020/MSR040低温漂、低功耗电压基准