当前位置: 首页 > news >正文

机械学习—零基础学习日志(高数22——泰勒公式理解深化)

核心思想:函数逼近

在泰勒的年代,如果想算出e的0.001次方,这是很难计算的。那为了能计算这样的数字,可以尝试逼近的思想。

但是函数又不能所有地方都相等,那退而求其次,只要在一个极小的范围,可以持续逼近就可以了。这里可以看看具体如何逼近呢?

第一步:逼近处的函数值应当一样

可以看到,在重合点处,函数值相同,那这逼近了吗,不对,差距太大了。为什么呢,很明显在重合点之外的地方,差得都太多了。因为趋势不对,那趋势一样呢?

第二步:逼近处的一阶导数一样

那就要求函数值一样,同时导数一样。

这已经非常接近,但是为什么函数值一样,导数值一样,看上去还是不那么贴合呢?因为导数的导数,趋势还不够!斜率不够接近!所以想到了二阶导。

第三步:斜率变化趋势,二阶导一样再试试

第四步:斜率变化趋势的趋势,三阶导一样再试试

......

第五步:斜率变化趋势的趋势的趋势,四阶导一样再试试

......

导数是局部的性质,所以一阶,二阶,三阶,不影响其他部分的趋势。

使用幂函数贴近非常有意义

我们回顾一下一个多项式函数求导的过程~以这个函数为例。

我们算一阶导,二阶导,三阶导.....

当我们代入x=0,以及在多重导的情况下,存在两种情况,第一,常数项被导没,第二,存在有x的项数代入x= 0,也没了。

在这种情况下,具体的三阶导,只和其系数有关。

所以,其实n阶导数,在x= 0时,导数只和n次项数前的系数,以及n的阶乘有关。

再回过来看e的x次方

一个函数f(x),作为多项式,假设是f(x) = a + bx + cx² + dx³....,那其实常数项由a决定,b决定一阶导,c决定二阶导。。。

那如果e的x次方,使用多项式逼近,也就是上述的f(x) = a + bx + cx² + dx³....

我们知道,e的x次方,导数都是e的x次方,又在x = 0处求导,所以导数都是1。那我们就可以确定对应的a , b , c 等等所有值了。

皮亚诺公式:

进一步思考,那如果x不再趋近于0,而是趋近于1,例如,f(1)的三次方,还可以使用上面的规律吗?

是可以的,我们只需要把式子改成( x )改写成 ( x - 1 ) 就可以。

因为在构造对应的式子时,我们巧妙利用了,高阶导去除常数项,以及x = x0为零的特点,构造了对应多项式。

那我们只需要满足,在对应的点处,f(x)的n阶导数相同,那就其实可以满足对应的基本逻辑。

成立条件:只在x0时成立

这里有很重要的一句话:泰勒展开是更高阶的等价,而之前的x~sinx,只是一阶导的等价

奇思妙想:

我把f(1),直接等价到了e乘以f(0),这种做法是不对的。因为趋近的模式均不再成立,例如f(1)并不等于e*趋近式。

重点参考up主:考研数学王昊元《【数一147】泰勒公式的顶级理解》,他讲得真的不错。

http://www.lryc.cn/news/416222.html

相关文章:

  • Java | Leetcode Java题解之第318题最大单词长度乘积
  • 科普文:JUC系列之多线程门闩同步器Condition的使用和源码解读
  • Stable Diffusion绘画 | 图生图-基础使用介绍—提示词反推
  • 正点原子imx6ull-mini-Linux驱动之Linux SPI 驱动实验(22)
  • TypeScript 函数
  • C++ : namespace,输入与输出,函数重载,缺省参数
  • 目标检测 | yolov1 原理和介绍
  • excel中有些以文本格式存储的数值如何批量转换为数字
  • 原神升级计划数据表:4个倒计时可以修改提示信息和时间,可以点击等级、命座、天赋、备注进行修改。
  • YoloV10 论文翻译(Real-Time End-to-End Object Detection)
  • 第R1周:RNN-心脏病预测
  • Golang | Leetcode Golang题解之第321题拼接最大数
  • 远程连接本地虚拟机失败问题汇总
  • WebRTC 初探
  • Python:read,readline和readlines的区别
  • 重生之我学编程
  • 如何将PostgreSQL的数据实时迁移到SelectDB?
  • 关于c语言的const 指针
  • 万能门店小程序开发平台功能源码系统 带完整的安装代码包以及安装搭建教程
  • C#初级——字典Dictionary
  • git版本控制的底层实现
  • 深入解析数据处理的技术与实践
  • python-调用c#代码
  • 构建铁路安全防线:EasyCVR视频+AI智能分析赋能铁路上道作业高效监管
  • openai command not found (mac)
  • 鸿蒙(API 12 Beta2版)NDK开发【LLDB高性能调试器】调试和性能分析
  • HAL库源码移植与使用之DMA
  • Scrapy爬虫框架介绍、创建Scrapy项目
  • 如何监测某个进程是否退出(C++)?
  • Python:Neo 库读取 ABF 文件,数据格式详解