当前位置: 首页 > news >正文

Pytorch实现线性回归Linear Regression

借助 PyTorch 实现深度神经网络 - 线性回归 - 第 2 周 | Coursera

线性回归预测

用PyTorch实现线性回归模块

f070f2ec76df43abaf729d5793230134.png

创建自定义模块(内含一个线性回归)

6b99a23f99be443c99f8501dc8f9943f.png

24c6b66fe591473f92115b0246077091.png

训练线性回归模型

对于线性回归,特定类型的噪声是高斯噪声

4dd6e6e710d041118e8c6916ee5ab399.png

平均损失均方误差函数:

ca40bebf938f4d819d5169765b05fe2c.png

loss求解(导数=0):

823863a0a51d49c494927630586adcc1.png

梯度下降

783413bc85ec40649e6c44e137d022e4.png

eq?%5Ceta表示学习率

66a21da7c5ad46f1806059a03f38f82f.png

学习率过高,可能错过参数的最佳值

学习率过低,需要大量的迭代才能获得最小值

Batch Gradient Descent:使用整个训练集来更新模型的参数 

用Pytorch实现线性回归--梯度

493855116b9949559e0ff6ca31455924.png

45f47906ebf14783ac0a1fa75cbc857d.png

0a401308297e4e32bb8b0d351a6617fd.png

9dece871069a4a2891ddbd7478e07e0f.png

每个epoch就是一个iteration:

9802fbe8327d435ba6fb028827a0fcbb.png

画图版:

import torch
w=torch.tensor(-10.0,requires_grad=True)
X=torch.arange(-3,3,0.1).view(-1,1)
f=-3*X
# The class for plottingclass plot_diagram():# Constructordef __init__(self, X, Y, w, stop, go = False):start = w.dataself.error = []self.parameter = []print(type(X.numpy()))self.X = X.numpy()self.Y = Y.numpy()self.parameter_values = torch.arange(start, stop)self.Loss_function = [criterion(forward(X), Y) for w.data in self.parameter_values] w.data = start# Executordef __call__(self, Yhat, w, error, n):self.error.append(error)self.parameter.append(w.data)plt.subplot(212)plt.plot(self.X, Yhat.detach().numpy())plt.plot(self.X, self.Y,'ro')plt.xlabel("A")plt.ylim(-20, 20)plt.subplot(211)plt.title("Data Space (top) Estimated Line (bottom) Iteration " + str(n))# Convert lists to PyTorch tensorsparameter_values_tensor = torch.tensor(self.parameter_values)loss_function_tensor = torch.tensor(self.Loss_function)# Plot using the tensorsplt.plot(parameter_values_tensor.numpy(), loss_function_tensor.numpy())plt.plot(self.parameter, self.error, 'ro')plt.xlabel("B")plt.figure()# Destructordef __del__(self):plt.close('all')
gradient_plot = plot_diagram(X, Y, w, stop = 5)
# Define a function for train the modeldef train_model(iter):LOSS=[]for epoch in range (iter):# make the prediction as we learned in the last labYhat = forward(X)# calculate the iterationloss = criterion(Yhat,Y)# plot the diagram for us to have a better ideagradient_plot(Yhat, w, loss.item(), epoch)# store the loss into listLOSS.append(loss.item())# backward pass: compute gradient of the loss with respect to all the learnable parametersloss.backward()# updata parametersw.data = w.data - lr * w.grad.data# zero the gradients before running the backward passw.grad.data.zero_()
train_model(4)

15c5d775a43646ab97e2989e6726fede.png

cc0cff3af6a34921afbc9b5072d50532.png

9ed27917184b4175858fb2d17e559f1b.png

0e72fbd061894b10bbb3e5e9c1fba34b.png

用Pytorch实现线性回归--训练

与上文类似,只是多加了个b

梯度

c99b3440b11249348eefeba808ee2008.png

0aa14cf6f1714b678471e616405a2022.png

edfd17106a104718a2179867111b28b9.png

画函数图:

# The class for plot the diagramclass plot_error_surfaces(object):# Constructordef __init__(self, w_range, b_range, X, Y, n_samples = 30, go = True):W = np.linspace(-w_range, w_range, n_samples)B = np.linspace(-b_range, b_range, n_samples)w, b = np.meshgrid(W, B)    Z = np.zeros((30,30))count1 = 0self.y = Y.numpy()self.x = X.numpy()for w1, b1 in zip(w, b):count2 = 0for w2, b2 in zip(w1, b1):Z[count1, count2] = np.mean((self.y - w2 * self.x + b2) ** 2)count2 += 1count1 += 1self.Z = Zself.w = wself.b = bself.W = []self.B = []self.LOSS = []self.n = 0if go == True:plt.figure()plt.figure(figsize = (7.5, 5))plt.axes(projection='3d').plot_surface(self.w, self.b, self.Z, rstride = 1, cstride = 1,cmap = 'viridis', edgecolor = 'none')plt.title('Cost/Total Loss Surface')plt.xlabel('w')plt.ylabel('b')plt.show()plt.figure()plt.title('Cost/Total Loss Surface Contour')plt.xlabel('w')plt.ylabel('b')plt.contour(self.w, self.b, self.Z)plt.show()# Setterdef set_para_loss(self, W, B, loss):self.n = self.n + 1self.W.append(W)self.B.append(B)self.LOSS.append(loss)# Plot diagramdef final_plot(self): ax = plt.axes(projection = '3d')ax.plot_wireframe(self.w, self.b, self.Z)ax.scatter(self.W,self.B, self.LOSS, c = 'r', marker = 'x', s = 200, alpha = 1)plt.figure()plt.contour(self.w,self.b, self.Z)plt.scatter(self.W, self.B, c = 'r', marker = 'x')plt.xlabel('w')plt.ylabel('b')plt.show()# Plot diagramdef plot_ps(self):plt.subplot(121)plt.ylimplt.plot(self.x, self.y, 'ro', label="training points")plt.plot(self.x, self.W[-1] * self.x + self.B[-1], label = "estimated line")plt.xlabel('x')plt.ylabel('y')plt.ylim((-10, 15))plt.title('Data Space Iteration: ' + str(self.n))plt.subplot(122)plt.contour(self.w, self.b, self.Z)plt.scatter(self.W, self.B, c = 'r', marker = 'x')plt.title('Total Loss Surface Contour Iteration' + str(self.n))plt.xlabel('w')plt.ylabel('b')plt.show()

http://www.lryc.cn/news/412188.html

相关文章:

  • 十八次(虚拟主机与vue项目、samba磁盘映射、nfs共享)
  • P1340 兽径管理 题解|最小生成树
  • Python,Maskrcnn训练,cannot import name ‘saving‘ from ‘keras.engine‘ ,等问题集合
  • Linux常用工具
  • AI未来的发展如何
  • 若依替换首页上的logo
  • sed的使用示例
  • 学历不是障碍:大专生如何成功进入软件测试行业
  • 文件解析漏洞—IIS解析漏洞—IIS6.X
  • Sqlmap中文使用手册 - Brute force模块参数使用
  • ubuntu20.04 开源鸿蒙源码编译配置
  • 程序员面试 “八股文”在实际工作中是助力、阻力还是空谈?
  • 广告从用户点击开始到最终扣费的过程
  • Linux系统编程-信号进程间通信
  • Attention Module (SAM)是什么?
  • 【C语言】堆排序
  • ntp服务重启报错Failed to restart ntpd.service: Unit is masked.
  • 面试题-每日5到
  • 代码美学大师:打造Perl中的个性化代码格式化工具
  • 成为一名月薪 2 万的 web 安全工程师需要掌握哪些技能?
  • Linux中如何添加磁盘分区
  • 计算机毕业设计Hadoop+Hive专利分析可视化 面向专利的大数据管理系统 专利爬虫 专利数据分析 大数据毕业设计 Spark
  • git是什么?git和svn的区别。git的一些命令
  • RK3568平台(触摸篇)双屏异触调试
  • angular cmd
  • [ACTF2020 新生赛]BackupFile1
  • Springboot学习-day16
  • Map 31
  • dfs,CF 196B - Infinite Maze
  • 鸿蒙应用框架开发【JS注入与执行】 Web