当前位置: 首页 > news >正文

GLSL教程 第十三章:综合项目:创建一个完整的渲染场景(一更)

 

目录

13.1 项目规划和设计

13.1.1 项目目标

13.1.2 设计要求

13.2 实现场景中的光照、材质和纹理

13.2.1 创建基础场景

13.2.2 应用材质和纹理

13.3 集成高级渲染效果和后期处理

13.3.1 阴影映射(Shadow Mapping)

13.3.2 环境光遮蔽(AO)

13.3.3 简单的景深效果(Depth of Field)

13.3.4 阴影技术

13.4 性能优化

13.4.1 批处理渲染

13.4.2 LOD(细节层次)

13.4.3 减少状态切换

13.4.4 延迟渲染


     在本章中,我们将创建一个完整的渲染场景,涵盖从基础的场景设置到高级的渲染效果和后期处理。我们将使用OpenGL和GLSL来实现场景的渲染,并逐步引入光照、材质、纹理、阴影映射、环境光遮蔽(AO)以及景深效果等技术。

13.1 项目规划和设计

13.1.1 项目目标

       本项目的目标是创建一个包含地面、墙壁和一个简单3D模型(如立方体)的基本渲染场景。除此之外,我们还将实现以下高级渲染效果:

  • 阴影映射(Shadow Mapping)
  • 环境光遮蔽(Ambient Occlusion,AO)
  • 简单的景深效果(Depth of Field)
13.1.2 设计要求
  1. 场景内容:
    • 地面
    • 墙壁
    • 3D模型(立方体)
  2. 光照效果:
    • 点光源
    • 环境光
  3. 材质效果:
    • 漫反射和高光
  4. 高级渲染效果:
    • 阴影映射
    • 环境光遮蔽(AO)
    • 简单的景深效果

13.2 实现场景中的光照、材质和纹理

13.2.1 创建基础场景

       首先,我们将设置基础场景,包括地面、墙壁和一个简单的3D模型(立方体)。我们使用OpenGL创建这些基本几何体,并为每个对象定义适当的顶点和片段着色器。

顶点着色器 (shader.vert):

#version 330 corelayout(location = 0) in vec3 aPos;
layout(location = 1) in vec3 aNormal;
layout(location = 2) in vec2 aTexCoord;out vec3 FragPos;
out vec3 Normal;
out vec2 TexCoord;uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;void main() {vec4 worldPosition = model * vec4(aPos, 1.0);FragPos = worldPosition.xyz;Normal = mat3(transpose(inverse(model))) * aNormal;TexCoord = aTexCoord;gl_Position = projection * view * worldPosition;
}

片段着色器 (shader.frag):

#version 330 corein vec3 FragPos;
in vec3 Normal;
in vec2 TexCoord;out vec4 FragColor;struct Material {vec3 ambient;vec3 diffuse;vec3 specular;float shininess;
};struct Light {vec3 position;vec3 ambient;vec3 diffuse;vec3 specular;
};uniform Material material;
uniform Light light;
uniform vec3 viewPos;
uniform sampler2D diffuseTexture;void main() {// Ambientvec3 ambient = material.ambient * light.ambient;// Diffusevec3 norm = normalize(Normal);vec3 lightDir = normalize(light.position - FragPos);float diff = max(dot(norm, lightDir), 0.0);vec3 diffuse = material.diffuse * diff * light.diffuse;// Specularvec3 viewDir = normalize(viewPos - FragPos);vec3 reflectDir = reflect(-lightDir, norm);float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);vec3 specular = material.specular * spec * light.specular;vec3 result = ambient + diffuse + specular;FragColor = vec4(result, 1.0) * texture(diffuseTexture, TexCoord);
}
13.2.2 应用材质和纹理

       接下来,我们为场景中的物体应用基础的材质和纹理。材质的主要属性包括漫反射、镜面反射和环境光成分。纹理则用于为物体添加更多的细节和颜色。

纹理加载和绑定 (texture.cpp):

#include "texture.hpp"
#include <iostream>Texture::Texture(const char* imagePath) {glGenTextures(1, &ID);glBindTexture(GL_TEXTURE_2D, ID);// 设置纹理参数glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);// 加载并生成纹理int width, height, nrChannels;unsigned char* data = stbi_load(imagePath, &width, &height, &nrChannels, 0);if (data) {GLenum format;if (nrChannels == 1)format = GL_RED;else if (nrChannels == 3)format = GL_RGB;else if (nrChannels == 4)format = GL_RGBA;glTexImage2D(GL_TEXTURE_2D, 0, format, width, height, 0, format, GL_UNSIGNED_BYTE, data);glGenerateMipmap(GL_TEXTURE_2D);} else {std::cerr << "Failed to load texture: " << imagePath << std::endl;}stbi_image_free(data);
}void Texture::bind() const {glBindTexture(GL_TEXTURE_2D, ID);
}

场景对象加载 (scene_object.cpp):

#include "scene_object.hpp"
#include <glm/gtc/matrix_transform.hpp>SceneObject::SceneObject(const std::vector<Vertex>& vertices, const std::vector<unsigned int>& indices, const char* texturePath): vertices(vertices), indices(indices), texture(texturePath) {setupMesh();
}void SceneObject::setupMesh() {glGenVertexArrays(1, &VAO);glGenBuffers(1, &VBO);glGenBuffers(1, &EBO);glBindVertexArray(VAO);glBindBuffer(GL_ARRAY_BUFFER, VBO);glBufferData(GL_ARRAY_BUFFER, vertices.size() * sizeof(Vertex), &vertices[0], GL_STATIC_DRAW);glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBO);glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned int), &indices[0], GL_STATIC_DRAW);// 顶点位置glEnableVertexAttribArray(0);glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)0);// 法线glEnableVertexAttribArray(1);glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, Normal));// 纹理坐标glEnableVertexAttribArray(2);glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, sizeof(Vertex), (void*)offsetof(Vertex, TexCoords));glBindVertexArray(0);
}void SceneObject::draw(const Shader& shader) {shader.use();glBindVertexArray(VAO);glDrawElements(GL_TRIANGLES, indices.size(), GL_UNSIGNED_INT, 0);glBindVertexArray(0);
}

13.3 集成高级渲染效果和后期处理

13.3.1 阴影映射(Shadow Mapping)

       阴影映射用于在场景中生成逼真的阴影效果。我们将使用深度贴图来计算阴影,并在片段着色器中进行深度比较。

阴影映射Shader (shadow_mapping_shader.vert and shadow_mapping_shader.frag):

顶点着色器 (shadow_mapping_shader.vert):

#version 330 corelayout(location = 0) in vec3 aPos;uniform mat4 lightSpaceMatrix;
uniform mat4 model;void main() {gl_Position = lightSpaceMatrix * model * vec4(aPos, 1.0);
}

片段着色器 (shadow_mapping_shader.frag):

#version 330 corevoid main() {// 这里不需要输出颜色,深度缓冲会自动存储深度值
}
<
http://www.lryc.cn/news/411562.html

相关文章:

  • pgvector: 30 倍构建向量嵌入索引
  • GNSS形变监测系统
  • 每天一个数据分析题(四百五十三)- 随机抽样
  • Python爬虫知识体系-----Selenium
  • springboot+webSocket对接chatgpt
  • 【ROS2】 默认的DDS通信中间件替换为Eclipse Cyclone_DDS (DDS配置方法)
  • 迈向数智金融:机器学习金融科技新纪元的新风采
  • Nginx+PHP+CI框架实现,访问静态文件带权限验证
  • javascript 第二天
  • unity2D游戏开发17战斗精灵
  • kafka架构+原理+源码
  • 实力共鉴!微风企斩获2024年浙江省专精特新中小企业
  • C#:枚举及位标志周边知识详解(小白入门)
  • 这本vue3编译原理开源电子书,初中级前端竟然都能看懂
  • 小白如何安装WNO(小波神经算子),需要安装python3.8,torch,ptwt,pywt等
  • Java HashMap 源码解读笔记(一)--xunznux
  • “等保测评下的数据加密与隐私保护“
  • Oat++ 后端实现跨域
  • Three basic starting points to do AI
  • 等保测评练习卷22
  • Linux用户-普通用户
  • 世界顶级思想家颜廷利:生命的升华,人类与动物的进化之道
  • 团队心脏:项目比赛中激发团队潜力的策略与技巧
  • Qt安卓开发的一些概念
  • 语音交互、AI问答,等你来体验!
  • 深度对比分析python和RPA,为什么会python了,还要用RPA?
  • el-table支持行拖动
  • git拉取项目并切换到某个tag
  • 数据结构之探索“堆”的奥秘
  • 光影漫游者:高科技球形场馆开启沉浸式体验新时代—轻空间