当前位置: 首页 > news >正文

理解最先进模型的起点GPT-2 源码 配置的解释

理解最先进模型的起点GPT-2 源码 配置的解释

flyfish

为训练GPT模型设置和管理配置参数、日志记录以及实验的可重复性
理解最先进模型的起点GPT-2 理论知识
理解最先进模型的起点GPT-2 源码 注释 模型部分(from mingpt.model)
utils.py

import os
import sys
import json
import random
from ast import literal_evalimport numpy as np  # 导入numpy库,用于数值计算
import torch  # 导入PyTorch库,用于深度学习模型# -----------------------------------------------------------------------------def set_seed(seed):""" 设置随机种子,以确保实验的可重复性 """random.seed(seed)np.random.seed(seed)torch.manual_seed(seed)torch.cuda.manual_seed_all(seed)def setup_logging(config):""" 设置日志记录功能 """work_dir = config.system.work_dir# 如果工作目录不存在,则创建os.makedirs(work_dir, exist_ok=True)# 记录命令行参数(如果有)with open(os.path.join(work_dir, 'args.txt'), 'w') as f:f.write(' '.join(sys.argv))# 记录配置信息with open(os.path.join(work_dir, 'config.json'), 'w') as f:f.write(json.dumps(config.to_dict(), indent=4))class CfgNode:""" 轻量级的配置类,灵感来自yacs """# TODO: 转换为像yacs那样从字典子类化# TODO: 实现冻结功能以防止自伤# TODO: 在读写参数时增加存在性/覆盖性检查?def __init__(self, **kwargs):# 更新实例的字典属性self.__dict__.update(kwargs)def __str__(self):# 返回配置的字符串表示return self._str_helper(0)def _str_helper(self, indent):""" 辅助方法,支持嵌套缩进以美观打印 """parts = []for k, v in self.__dict__.items():if isinstance(v, CfgNode):parts.append("%s:\n" % k)parts.append(v._str_helper(indent + 1))else:parts.append("%s: %s\n" % (k, v))parts = [' ' * (indent * 4) + p for p in parts]return "".join(parts)def to_dict(self):""" 返回配置的字典表示 """return { k: v.to_dict() if isinstance(v, CfgNode) else v for k, v in self.__dict__.items() }def merge_from_dict(self, d):# 从字典中更新配置self.__dict__.update(d)def merge_from_args(self, args):"""从字符串列表更新配置,通常来自命令行参数,即sys.argv[1:].参数格式预期为 `--arg=value`,arg可以使用.表示嵌套子属性。例如:--model.n_layer=10 --trainer.batch_size=32"""for arg in args:keyval = arg.split('=')assert len(keyval) == 2, "每个覆盖参数的格式应为 --arg=value,当前为 %s" % argkey, val = keyval  # 解包# 首先将val转换为Python对象try:val = literal_eval(val)"""这里需要一些解释。- 如果val只是一个字符串,literal_eval将抛出ValueError- 如果val表示某种对象(如3, 3.14, [1,2,3], False, None等),它将被创建"""except ValueError:pass# 找到适当的对象以插入属性assert key[:2] == '--'key = key[2:]  # 去掉'--'keys = key.split('.')obj = selffor k in keys[:-1]:obj = getattr(obj, k)leaf_key = keys[-1]# 确保该属性存在assert hasattr(obj, leaf_key), f"{key} 不是配置中存在的属性"# 覆盖属性print("命令行覆盖配置属性 %s 为 %s" % (key, val))setattr(obj, leaf_key, val)
  1. 设置随机种子
  • set_seed(seed)函数设置了Python、Numpy和PyTorch的随机种子,以确保实验的结果是可重复的。这对于调试和验证模型是非常重要的。
  1. 日志记录
  • setup_logging(config)函数用于设置日志记录。它会创建一个工作目录(如果不存在),并将命令行参数和配置信息记录在文件中。这样可以方便地跟踪和重现实验。
  1. 配置管理
  • CfgNode类是一个轻量级的配置类,用于管理实验中的各种参数。它支持从字典、命令行参数等不同来源更新配置,便于灵活地设置和修改参数。

  • __init__(self, **kwargs):初始化配置节点,将传入的参数更新为实例属性。

  • __str__(self):返回配置的字符串表示,用于打印配置。

  • _str_helper(self, indent):辅助方法,支持嵌套缩进以美观打印。

  • to_dict(self):将配置转换为字典表示,便于序列化和存储。

  • merge_from_dict(self, d):从字典中更新配置参数。

  • merge_from_args(self, args):从命令行参数中更新配置参数,支持嵌套结构。

配置举例

{"system": {"seed": 3407,"work_dir": "./out/adder"},"data": {"ndigit": 2},"model": {"model_type": "gpt-nano","n_layer": null,"n_head": null,"n_embd": null,"vocab_size": null,"block_size": null,"embd_pdrop": 0.1,"resid_pdrop": 0.1,"attn_pdrop": 0.1},"trainer": {"device": "auto","num_workers": 4,"max_iters": null,"batch_size": 64,"learning_rate": 0.0005,"betas": [0.9,0.95],"weight_decay": 0.1,"grad_norm_clip": 1.0}
}

如果想看GPT-2的地基Transformer,可以看下面的链接

Transformer - 注意⼒机制 Scaled Dot-Product Attention 计算过程
Transformer - 注意⼒机制 代码实现
Transformer - 注意⼒机制 Scaled Dot-Product Attention不同的代码比较
Transformer - 注意⼒机制 代码解释
Transformer - 注意⼒机制 Attention 中的 Q, K, V 解释(1)
Transformer - 注意⼒机制 Attention 中的 Q, K, V 解释(2)

Transformer的Encoder和Decoder之间的交互
Transformer - Self-Attention层的复杂度的计算
Transformer - 《Attention is All You Need》中的Scaled Dot-Product Attention,为什么要Scaled
Transformer - Layer Normalization
Transformer - Teacher Forcing
Transformer - Outputs(Shifted Right)

Transformer - model architecture
Transformer - Positional Encoding 位置编码 代码实现
Transformer - 注意⼒机制 代码实现
Transformer - 掩码张量
Vanilla Transformer
Transformer - 注意⼒机制 Attention Scaled Dot-Product Attention不同的代码比较
Transformer中的FeedForward
Transformer中的 Add Norm

http://www.lryc.cn/news/410761.html

相关文章:

  • C++11 可变参数模板
  • 项目实战——外挂开发(30小时精通C++和外挂实战)
  • 【人工智能专栏】Constructive损失解析
  • PHP经销商订货管理系统小程序源码
  • 【网络世界】HTTPS协议
  • 根据空域图信息构造飞机航线图以及飞行轨迹模拟matlab仿真
  • llama-factory 系列教程 (五),SFT 微调后的模型,结合langchain进行推理
  • hive 中编写生成连续月sql
  • 前端开发实用的网站合集
  • 蓄势赋能 数智化转型掌舵人百望云杨正道荣膺“先锋人物”
  • (七)前端javascript中的函数式编程技巧2
  • LeetCode热题 翻转二叉树、二叉树最大深度、二叉树中序遍历
  • DNS查询服务器的基本流程以及https的加密过程
  • 后台管理系统(springboot+vue3+mysql)
  • Android经典面试题之Kotlin中 if 和 let的区别
  • python inf是什么意思
  • Cursor搭配cmake实现C++程序的编译、运行和调试
  • C#-了解ORM框架SqlSugar并快速使用(附工具)
  • 巴黎奥运会 为啥这么抠?
  • Python日期和时间处理库之pendulum使用详解
  • 如何通过 CloudCanal 实现从 Kafka 到 AutoMQ 的数据迁移
  • 详解Qt 之QPainterPath
  • 深入理解Apache Kylin:从概念到实践
  • vue3框架Arco Design输入邮箱选择后缀
  • 制作镜像
  • Kylin系列(二)进阶
  • Maven实战.依赖(依赖范围、传递性依赖、依赖调解、可选依赖等)
  • 关于React17的setState
  • 2024华为OD机试真题-英文输入法Python-C卷D卷-100分
  • magento2 安装win环境和linux环境