当前位置: 首页 > news >正文

【大模型系列】Video-LaVIT(2024.06)

在这里插入图片描述

  • Paper:https://arxiv.org/abs/2402.03161
  • Github:https://video-lavit.github.io/
  • Title:Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization
  • Author:Yang Jin, 北大,快手

文章目录

  • 1 Video-LaViT总结(省流版)
    • 1.1 Video-LaViT是什么?
    • 1.2 Video-LaViT能干什么?
      • 1.2.1 图像/视频问答
      • 1.2.2 文生图
      • 1.2.3 文生视频
      • 1.2.4 图生视频
  • 2 Motivation
  • 3 Method
    • 3.1 关键帧与运动信息的获取与motion encoder
    • 3.2 video detokenizer
  • 4 训练细节
  • 参考资料

1 Video-LaViT总结(省流版)

1.1 Video-LaViT是什么?

Video-LaViT是LaViT这篇工作的拓展,详见上一篇博客【大模型系列】Language-Vision Transformer(LaVIT, ICLR2024)
,作者同样来自于北大和快手。思路与LaViT类似,通过将视频分解为交替的关键帧和运动向量,关键帧采用LaViT中的Image tokenizer,运动向量则设计了一个Motion tokenizer来进行编码。然后通过[IMG]、[/IMG]和[MOV]、[/MOV]来区分。

1.2 Video-LaViT能干什么?

1.2.1 图像/视频问答

Video-LaViT可以理解图像和视频内容,并根据问题给出答案。
在这里插入图片描述

1.2.2 文生图

根据给定文本,生成对应的图片,毕竟基于LaViT开发的。
在这里插入图片描述

1.2.3 文生视频

根据给定文本,生成对应的视频。

"Sailboat sailing on a sunny day in a mountain lake""A steaming cup of coffee with mountains in the background. Resting during road trip"

1.2.4 图生视频

根据给定图片,生成对应的视频。

2 Motivation

当前一些video tokenization工作的总结:

  • 流行的方式是先将原始视频下采样为一系列的frames,再使用ViT-encoder进行处理,这种方式忽略了帧之间的时间动态信息。
  • VideoPoet(2023):3D video tokenizer,使用long token sequence,导致只能处理短视频,长视频资源消耗太大。

解决上面问题的方式:

  • 视频中存在大量的冗余信息,将视频分解为交替的关键帧(keyframe&motion vectors)【其实就是视频编码的思路】
    分解之后的组合可以用更少的token来表示视频的时间动态;
  • 复用现成的纯图像LLM所获得的视觉知识,而只需专注于对是时间信息(temporal information)进行建模。

3 Method

  • video tokenizer:将视频转化为离散的tokens,其中关键帧keyframe使用现成的image tokenizer(ViT-G/14 of EVA-CLIP);
  • motion encoder:用于将temporal motion也转化为离散的token;
  • video detokenizer:将LLM生成的video token恢复成视频。
    在这里插入图片描述

3.1 关键帧与运动信息的获取与motion encoder

基于MPEG-4压缩技术来获取关键帧和运动信息。视频中的I帧就是关键帧。通常视频帧被分成16x16个宏块,运动信息motion vectors是通过寻找相邻帧之间的最佳就宏块对应关系来确定的。
m ⃗ ( p , q ) = a r g ⁡ min ⁡ i , j ∣ ∣ I t ⁢ ( p , q ) − I t − 1 ⁢ ( p − i , q − j ) ∣ ∣ \vec{m}(p, q) = arg⁡\min_{i,j}||I_t⁢(p,q)−I_{t-1}⁢(p−i,q−j)|| m (p,q)=argi,jmin∣∣It(p,q)It1(pi,qj)∣∣
其中I(p, q)表示宏块在(p, q)的像素值,(i, j)是两个宏块中心的偏移量,于是视频可以分解为关键帧(HxWx3)和后续的T帧的运动矢量(Tx(H/16)x(W/16)x2)。

这段看不懂没关系,后面实际是采用ffmpeg来提取视频的关键帧I帧和运动向量P帧。
在这里插入图片描述
Source: I帧、P帧、B帧、GOP、IDR 和PTS, DTS之间的关系

运动矢量的tokenization与LaVIT的方式类似,先通过一个spatiotemporal encoder得到latent embedding,再与codebook中的向量计算L2距离,选择最近的codebook中的向量代替之,这就是所谓的Motion quantization,得到的结果就是motion vector的token,可参与后续的训练。

整个motion tokenizer通过一个解码器,来将motion token恢复,最后计算重构损失来更新参数。

3.2 video detokenizer

  • key frame关键帧:de-noising U-Net,与LaVIT类似,使用重建的visual features作为条件去控制生成细节
    在这里插入图片描述

video detokenizer依赖于motion vector的引导,来生成关键帧之后T帧的恢复。有2种不同的motion conditon forms:
1、给定motion vector:(Tx(H/16)x(W/16)x2),采用最近邻插值的方式,使其与UNet的输入相匹配;
2、关键帧key frame的latent state I(VAE产生)重复T以提供visual condition;
3、motion vector、key frame latent I和noisy video frame按通道拼接,作为video dekoenizer的输入;
4、使用3DUnet中的spatial temporal cross-attention block引入motion feature embedding来增强生成效果;

为了缓解单独解码带来的不同clip之间的细粒度视觉细节不一致,在解码关键帧时加入了明确的噪声约束。通过反转DDIM采样将最新一帧从先前生成的状态转化为中间的噪声状态。

4 训练细节

训练说明:

  • [MOV][/MOV]用于区分运动模态
  • 交换多模态数据对的顺序:[video⁢(image),text]和 [text,video⁢(image)]
  • 以自回归的形式进行训练(在上一个预测的基础上预测下一个)

训练分为3个阶段:
Step1: 训练tokenizer和detokenizer,该阶段只需要视频数据,无需对应的captions,以生成视频的tokens,

  • WebVid-10M,包含10M视频-文本对,含有水印;
  • 训练detokenizer的时候,使用InterVid-14M-aesthetic数据的子集来去除生成视频中的水印,并提升生成视频的美感;

Step2: LLM训练,学习不同模态之间数据的关联;

  • 混合视频、图像和文本数据:
    • WebVid-10M
    • Conceptual Caption 93M
    • SBU
    • BLIP-Capfit
    • RedPajama英文语料库:用于保留LLM原本的语言理解能力

Step3: Instruction tuning:以适应不同的任务。

  • LLaVA v1.5的665k图像文本指令数据集
  • Video-ChatGPT的100k视频-文本指令数据集

参考资料

[1] I帧、P帧、B帧、GOP、IDR 和PTS, DTS之间的关系
[2] 【大模型系列】Language-Vision Transformer(LaVIT, ICLR2024)

http://www.lryc.cn/news/410469.html

相关文章:

  • 【总结】nacos作为注册中心-应用启动失败:NacosDiscoveryProperties{serverAddr=‘127.0.0.1:8848‘……
  • C语言——数组和排序
  • QEMU 新增QMPHMP指令【原文阅读】
  • 【Linux】全志Tina配置屏幕时钟的方法
  • 探索WebKit的CSS表格布局:打造灵活的网页数据展示
  • 信号的运算
  • Vue3知识点汇总
  • C++设计模式--单例模式
  • 数据驱动未来:构建下一代湖仓一体电商数据分析平台,引领实时商业智能革命
  • 学习JavaScript第五天
  • pythonGame-实现简单的坦克大战
  • 不太常见的asmnet诊断
  • 双指针-【3,4,5,6,7,8】
  • react Vant中如何获取步进器的值
  • Windows下Git Bash乱码问题解决
  • HTML5 + CSS3
  • NFTScan | 07.22~07.28 NFT 市场热点汇总
  • 24年第三届钉钉杯大学生大数据挑战赛
  • 探索分布式光伏运维系统的组成 需要几步呢?
  • 做知识付费项目还能做吗?知识付费副业项目如何做?能挣多少钱?
  • K210视觉识别模块学习笔记7:多线程多模型编程识别
  • Go语言教程(一看就会)
  • 【Golang 面试 - 基础题】每日 5 题(十)
  • OD C卷 - 密码输入检测
  • 【每日一题】【逆推法 + 贪心】【数学】造数 河南萌新联赛2024第(一)场:河南农业大学 A题 C++
  • 刷题计划 day4 【双指针、快慢指针、环形链表】链表下
  • 最高200万!苏州成都杭州的这些AI政策补贴,你拿到了吗?
  • 使用两台虚拟机分别部署前端和后端项目
  • Halcon学习之derivate_gauss
  • 智能优化算法(三):遗传算法