当前位置: 首页 > news >正文

树 形 DP (dnf序)

二叉搜索子树的最大键值 

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:class info{public:int maxnum;int minnum;bool isbst;int sum;int maxbstsum;info(int a,int b,bool c,int d,int e){maxnum=a;minnum=b;isbst=c;sum=d;maxbstsum=e;}};info f(TreeNode* root){if(root==nullptr)return info(INT_MIN,INT_MAX,true,0,0);info infol=f(root->left);info infor=f(root->right);int maxn=max(root->val,max(infol.maxnum,infor.maxnum));int minn=min(root->val,min(infol.minnum,infor.minnum));int sumn=root->val+infol.sum+infor.sum;bool isbetn=infol.isbst&&infor.isbst&&root->val<infor.minnum&&root->val>infol.maxnum;int maxbetnumn=max(infol.maxbstsum,infor.maxbstsum);if(isbetn)maxbetnumn=max(maxbetnumn,sumn);return info(maxn,minn,isbetn,sumn,maxbetnumn);}int maxSumBST(TreeNode* root) {return f(root).maxbstsum;}
};

递归求从头节点向下的最大的最大子树键值和,而到一个头节点要求其最大的键值和:如果不选头节点,需要子树上的最大键值和;如果选头节点,需要知道子树是否为二叉搜索树和子树所有节点的和,并且还需要子树上的最大值和最小值和头节点比较判断是否可以选头节点。最后把所有需要的信息整合到一起传递给父节点

 二叉树的直径

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),* right(right) {}* };*/
class Solution {
public:class info {public:int height;int diameter;info(int a, int b) {diameter = a;height = b;}};info f(TreeNode* cur) {if (cur == nullptr)return info(0, 0);info infol = f(cur->left);info infor = f(cur->right);int dia = max(infol.diameter, infor.diameter);dia = max(dia, infol.height + infor.height);int hei = max(infol.height, infor.height) + 1;return info(dia, hei);}int diameterOfBinaryTree(TreeNode* root) { return f(root).diameter; }
};

从一个头节点及其子树求最大的直径:如果不选头节点,需要其子树的最大直径和;如果选头节点,需要子树的高度

在二叉树中分配金币

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),* right(right) {}* };*/
class Solution {
public:int ans = 0;int f(TreeNode* root) {if (root == nullptr)return 0;int d = f(root->left) + f(root->right) + root->val - 1;ans += abs(d);return d;}int distributeCoins(TreeNode* root) {f(root);return ans;}
};

所有硬币的移动路径之和,是由每条边经过的次数累加和组成,所以只要求出每条边的经过次数求和即可。求一个子树所有边的经过次数之和,需要其子树的所有经过边之和,还有每个子树的节点与其子树上的硬币数量,做差的绝对值就是从头节点的子树到头节点之间的那条边经过的次数

没有上司的舞会

#include <iostream>
#include <vector>
using namespace std;
const int maxn = 6002;
int cnt;
int head[maxn];
int to[maxn];
int nex[maxn];
int happy[maxn];
bool laoda[maxn];
int yes[maxn];
int no[maxn];
void build(int n) {cnt = 1;for (int i = 1; i <= n; i++) {head[i] = 0;happy[i] = 0;laoda[i] = true;yes[i] = 0;no[i] = 0;}
}
void insert(int u, int v) {nex[cnt] = head[u];to[cnt] = v;head[u] = cnt++;
}void f(int cur) {no[cur] = 0;yes[cur] = happy[cur];for (int edge = head[cur]; edge > 0; edge = nex[edge]) {int v = to[edge];f(v);no[cur]  += max(no[v], yes[v]);yes[cur] += no[v];}}
int main() {int n;cin >> n;build(n);for (int i = 1; i <= n; i++) {int a;cin >> a;happy[i] = a;}for (int i = 1; i < n; i++) {int a, b;cin >> a >> b;insert(b,a);laoda[a] = false;}int head;for (int i = 1; i <= n; i++)if (laoda[i] == true) {head = i;break;}f(head);cout << max(yes[head], no[head]);return 0;}

 求一个树的最大快乐值:如果不选头节点,只需要其子树:选子树头节点的最大快乐值和不选子树头节点的最大快乐值;如果选头节点,需要不选子树头节点的最大快乐值

 监控二叉树

public class Solution {// 提交如下的方法public int minCameraCover(TreeNode root) {ans = 0;if (f(root) == 0) {ans++;}return ans;}// 遍历过程中一旦需要放置相机,ans++public static int ans;// 递归含义// 假设x上方一定有父亲的情况下,这个假设很重要// x为头的整棵树,最终想都覆盖,// 并且想使用最少的摄像头,x应该是什么样的状态// 返回值含义// 0: x是无覆盖的状态,x下方的节点都已经被覆盖// 1: x是覆盖状态,x上没摄像头,x下方的节点都已经被覆盖// 2: x是覆盖状态,x上有摄像头,x下方的节点都已经被覆盖private int f(TreeNode x) {if (x == null) {return 1;}int left = f(x.left);int right = f(x.right);if (left == 0 || right == 0) {ans++;return 2;}if (left == 1 && right == 1) {return 0;}return 1;}}

一个节点的情况:1.没有被监控覆盖  2.被覆盖但没有放监控  3.被覆盖并且放了监控

根据不同的节点情况讨论即可

 

路径总和

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int ans;;unordered_map<long ,int>umap;void f(TreeNode* cur,long sum,int targetSum){if(cur==nullptr)return ;sum+=cur->val;long need=sum-targetSum;if(umap.find(need)!=nullptr) ans+=umap[need];umap[sum]++;f(cur->left,sum,targetSum);f(cur->right,sum,targetSum);umap[sum]--;}int pathSum(TreeNode* root, int targetSum) {umap.clear();ans=0;umap[0]=1;f(root,0,targetSum);return ans;}
};

树形dp不仅父亲节点需要子节点信息,也可以从父节点向子节点传递信息。求target的路径,如果知道之前遍历过的所有的节点之和,和之前所有从根节点到遍历过的节点的的路径和的路径个数,求出sum-target的路径个数累加即可

到达首都的最少耗油量

public class Solution {public static long minimumFuelCost(int[][] roads, int seats) {int n = roads.length + 1;ArrayList<ArrayList<Integer>> graph = new ArrayList<>();for (int i = 0; i < n; i++) {graph.add(new ArrayList<>());}for (int[] r : roads) {graph.get(r[0]).add(r[1]);graph.get(r[1]).add(r[0]);}int[] size = new int[n];long[] cost = new long[n];f(graph, seats, 0, -1, size, cost);return cost[0];}// 根据图,当前来到u,u的父节点是p// 遍历完成后,请填好size[u]、cost[u]public static void f(ArrayList<ArrayList<Integer>> graph, int seats, int u, int p, int[] size, long[] cost) {size[u] = 1;for (int v : graph.get(u)) {if (v != p) {f(graph, seats, v, u, size, cost);size[u] += size[v];cost[u] += cost[v];// a/b向上取整,可以写成(a+b-1)/b// (size[v]+seats-1) / seats = size[v] / seats 向上取整cost[u] += (size[v] + seats - 1) / seats;}}}}

求到达头节点a的最少油量,需要其子树的最少油量,还需要到达其子树的头节点的人的个数,人数对seats求上限加子树的油量就是到达a的最少油量

相邻字符不同的最长路径

class Solution {
public:vector<vector<int>> pragh;void build(int n) {for (int i = 0; i < n; i++)pragh.push_back(vector<int>());}void insert(int u, int v) { pragh[u].push_back(v); }class info {public:int maxhead;int maxleng;info(int a, int b) {maxhead = a;maxleng = b;}};info f(string& s, int cur) {if (pragh[cur].empty())return info(1, 1);int max1 = 0, max2 = 0;int maxheight = 0;for (int edge : pragh[cur]) {info rem = f(s, edge);maxheight = max(maxheight, rem.maxleng);if (s[cur] != s[edge]) {if (rem.maxhead > max1) {max2 = max1;max1 = rem.maxhead;} else if (rem.maxhead > max2) {max2 = rem.maxhead;}}}maxheight = max(maxheight, max1 + max2 + 1);int maxn = max1 + 1;return info(maxn, maxheight);}int longestPath(vector<int>& parent, string s) {int n = parent.size();build(n);for (int i = 1; i < n; i++) {insert(parent[i], i);}return f(s, 0).maxleng;}
};

求头节点a的子树的最大路径:如果不选a,需a的子树的最大路径和;如果选a,需要子树的头节点向下延申的最大长度

 

  移除子树后的二叉树高度

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left),* right(right) {}* };*/
class Solution {
public:static const int maxn = 100005;int dfn[maxn];int size[maxn];int deep[maxn];int maxl[maxn];int maxr[maxn];int dfnnum;void f(TreeNode* cur, int k) {int i = ++dfnnum;dfn[cur->val] = i;deep[i] = k;size[i] = 1;if (cur->left != nullptr) {f(cur->left, k + 1);size[i] += size[dfn[cur->left->val]];}if (cur->right != nullptr) {f(cur->right, k + 1);size[i] += size[dfn[cur->right->val]];}}vector<int> treeQueries(TreeNode* root, vector<int>& queries) {dfnnum = 0;f(root, 0);for (int i = 1; i <= dfnnum; i++) {maxl[i] = max(maxl[i - 1], deep[i]);}maxl[0] = 0;maxl[dfnnum + 1] = 0;for (int i = dfnnum; i >= 1; i--)maxr[i] = max(maxr[i + 1], deep[i]);maxr[0] = 0;maxr[dfnnum + 1] = 0;int m = queries.size();vector<int> ans;for (int i = 0; i < m; i++) {int leftmax = maxl[dfn[queries[i]] - 1];int rightmax = maxr[dfn[queries[i]] + size[dfn[queries[i]]]];ans.push_back(max(leftmax, rightmax));}return ans;}
};

 对树做dfn序,然后求个子树的大小和各节点的高度,并且求出从0到各dfn序节点之间的最大高度和从n到各dfn序节点的最大高度,然后挨个求就可以

从树中删除边的最小分数

class Solution {
public:static const int maxn = 1005;vector<vector<int>> pragh;int dfn[maxn];int size[maxn];int xog[maxn];int dfnnum;void build(int n) {int dfnnum = 0;for (int i = 0; i <= n; i++) {pragh.push_back(vector<int>());dfn[i] = 0;size[0] = 0;xog[i] = 0;}}void insert(int u, int v) {pragh[u].push_back(v);pragh[v].push_back(u);}void f(int cur, vector<int>& nums) {int i = ++dfnnum;dfn[cur] = i;xog[i] = nums[cur];size[i] = 1;for (auto node : pragh[cur]) {if (dfn[node] == 0) {f(node, nums);xog[i] ^= xog[dfn[node]];size[i] += size[dfn[node]];}}}int minimumScore(vector<int>& nums, vector<vector<int>>& edges) {int n = nums.size();build(n);for (auto edge : edges) {insert(edge[0], edge[1]);}f(0, nums);int ans = INT_MAX;for (int i = 0; i < edges.size(); i++) {int a = max(dfn[edges[i][0]], dfn[edges[i][1]]);for (int j = i + 1; j < edges.size(); j++) {int b = max(dfn[edges[j][0]], dfn[edges[j][1]]);int pre, pos;if (a < b) {pre = a;pos = b;} else {pre = b;pos = a;}int sum1 = xog[pos];int sum2, sum3;if (pre + size[pre] > pos) {sum2 = sum1 ^ xog[pre];sum3 = xog[pre] ^ xog[1];} else {sum2 = xog[pre];sum3 = sum1 ^ sum2 ^ xog[1];}ans = min(ans, max(sum1, max(sum2, sum3)) -min(sum1, min(sum2, sum3)));}}return ans;}
};

求出各子树的异或和,然后两次for循环枚举各边

  选课

 三维树形dp,枚举最右子树的分配节点个数讨论

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.ArrayList;// 普通解法,邻接表建图 + 相对好懂的动态规划
// 几乎所有题解都是普通解法的思路,只不过优化了常数时间、做了空间压缩
// 但时间复杂度依然是O(n * 每个节点的孩子平均数量 * m的平方)
public class Main {public static int MAXN = 301;public static int[] nums = new int[MAXN];public static ArrayList<ArrayList<Integer>> graph;static {graph = new ArrayList<>();for (int i = 0; i < MAXN; i++) {graph.add(new ArrayList<>());}}public static int[][][] dp = new int[MAXN][][];public static int n, m;public static void build(int n) {for (int i = 0; i <= n; i++) {graph.get(i).clear();}}public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while (in.nextToken() != StreamTokenizer.TT_EOF) {// 节点编号从0~nn = (int) in.nval;in.nextToken();m = (int) in.nval + 1;build(n);for (int i = 1, pre; i <= n; i++) {in.nextToken();pre = (int) in.nval;graph.get(pre).add(i);in.nextToken();nums[i] = (int) in.nval;}out.println(compute());}out.flush();out.close();br.close();}public static int compute() {for (int i = 0; i <= n; i++) {dp[i] = new int[graph.get(i).size() + 1][m + 1];}for (int i = 0; i <= n; i++) {for (int j = 0; j < dp[i].length; j++) {for (int k = 0; k <= m; k++) {dp[i][j][k] = -1;}}}return f(0, graph.get(0).size(), m);}// 当前来到i号节点为头的子树// 只在i号节点、及其i号节点下方的前j棵子树上挑选节点// 一共挑选k个节点,并且保证挑选的节点连成一片// 返回最大的累加和public static int f(int i, int j, int k) {if (k == 0) {return 0;}if (j == 0 || k == 1) {return nums[i];}if (dp[i][j][k] != -1) {return dp[i][j][k];}int ans = f(i, j - 1, k);// 第j棵子树头节点v int v = graph.get(i).get(j - 1);for (int s = 1; s < k; s++) {ans = Math.max(ans, f(i, j - 1, k - s) + f(v, graph.get(v).size(), s));}dp[i][j][k] = ans;return ans;}}

  定义"最优子结构",从大的dfn序到小的dfn序推出转移方程

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;
import java.io.StreamTokenizer;
import java.util.Arrays;
public class Main {public static int MAXN = 301;public static int[] nums = new int[MAXN];// 链式前向星建图public static int edgeCnt;public static int[] head = new int[MAXN];public static int[] next = new int[MAXN];public static int[] to = new int[MAXN];// dfn的计数public static int dfnCnt;// 下标为dfn序号public static int[] val = new int[MAXN + 1];// 下标为dfn序号public static int[] size = new int[MAXN + 1];// 动态规划表public static int[][] dp = new int[MAXN + 2][MAXN];public static int n, m;public static void build(int n, int m) {edgeCnt = 1;dfnCnt = 0;Arrays.fill(head, 0, n + 1, 0);Arrays.fill(dp[n + 2], 0, m + 1, 0);}public static void addEdge(int u, int v) {next[edgeCnt] = head[u];to[edgeCnt] = v;head[u] = edgeCnt++;}public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));StreamTokenizer in = new StreamTokenizer(br);PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));while (in.nextToken() != StreamTokenizer.TT_EOF) {n = (int) in.nval;in.nextToken();m = (int) in.nval;build(n, m);for (int i = 1; i <= n; i++) {in.nextToken();addEdge((int) in.nval, i);in.nextToken();nums[i] = (int) in.nval;}out.println(compute());}out.flush();out.close();br.close();}public static int compute() {f(0);// 节点编号0 ~ n,dfn序号范围1 ~ n+1// 接下来的逻辑其实就是01背包!不过经历了很多转化// 整体的顺序是根据dfn序来进行的,从大的dfn序,遍历到小的dfn序// dp[i][j] : i ~ n+1 范围的节点,选择j个节点一定要形成有效结构的情况下,最大的累加和// 怎么定义有效结构?重点!重点!重点!// 假设i ~ n+1范围上,目前所有头节点的上方,有一个总的头节点// i ~ n+1范围所有节点,选出来j个节点的结构,// 挂在这个假想的总头节点之下,是一个连续的结构,没有断开的情况// 那么就说,i ~ n+1范围所有节点,选出来j个节点的结构是一个有效结构for (int i = n + 1; i >= 2; i--) {for (int j = 1; j <= m; j++) {dp[i][j] = Math.max(dp[i + size[i]][j], val[i] + dp[i + 1][j - 1]);}}// dp[2][m] : 2 ~ n范围上,选择m个节点一定要形成有效结构的情况下,最大的累加和// 最后来到dfn序为1的节点,一定是原始的0号节点// 原始0号节点下方一定挂着有效结构// 并且和补充的0号节点一定能整体连在一起,没有任何跳跃连接// 于是整个问题解决return  nums[0]+dp[2][m];}// u这棵子树的节点数返回public static int f(int u) {int i = ++dfnCnt;val[i] = nums[u];size[i] = 1;for (int ei = head[u], v; ei > 0; ei = next[ei]) {v = to[ei];size[i] += f(v);}return size[i];}}

http://www.lryc.cn/news/409749.html

相关文章:

  • React的生命周期?
  • c# - - - ASP.NET Core 网页样式丢失,样式不对
  • Cannot find module ‘html-webpack-plugin
  • vue、react部署项目的 hashRouter 和 historyRouter模式
  • Qt 实现抽屉效果
  • windows上启动Kafka
  • 贪心系列专题篇三
  • Java中两个集合取差集
  • flask mysql数据迁移
  • Kylin系列(一)入门
  • pmp学习交流组队~
  • 公司常用的监控软件有哪些?2024年六大公司监控软件良心推荐!
  • DNS解析异常--排查验证
  • OpenCV库学习之Canny边缘检测模块
  • Python 教程(七):match...case 模式匹配
  • Python小项目实战:杨辉三角
  • java注解与反射(非常详细, 带有很多样例)
  • 模拟实现短信登录功能 (session 和 Redis 两种代码实例) 带前端演示
  • C# Parallel设置最大并发度
  • 【java】力扣 反转字符串中的单词
  • 科学设计程序员面试内容,破解“八股文”之弊
  • 蓝牙BlueZ验证使用记录
  • 【从0制作自己的ros导航小车:上位机篇】02、ros1多机通讯与坐标变换可视化
  • JumpServer关闭admin mfa验证
  • Kafka知识总结(选举机制+控制器+幂等性)
  • 2024非常全的接口测试面试题及参考答案-软件测试工程师没有碰到算我输!
  • python 写一个年会抽奖的demo
  • C++ OpenCV 实现多张图片叠加 叠加文字
  • 用 apifox cli 命令行运行本地接口出现TypeError:Invalid IP address: undefined
  • PyQt6简易案例代码GUI界面小工具——实现增、删、查、改(练手正合适)