当前位置: 首页 > news >正文

数据结构之判断二叉树是否为搜索树(C/C++实现)

文章目录

    • 判断二叉树是否为搜索树
    • 方法一:递归法
    • 方法二:中序遍历法
    • 总结

在这里插入图片描述


二叉树是一种非常常见的数据结构,它在计算机科学中有着广泛的应用。二叉搜索树(Binary Search Tree,简称BST)是二叉树的一种特殊形式,它具有以下性质:对于树中的任意一个节点,其左子树中的所有节点的值都小于该节点的值,其右子树中的所有节点的值都大于该节点的值。本文将详细介绍如何判断一个二叉树是否为搜索树,并提供C和C++的实现示例。

判断二叉树是否为搜索树

思路
判断一个二叉树是否为搜索树,可以通过以下两种方法:

  1. 递归法
  2. 中序遍历法

下面分别对这两种方法进行详细讲解。

方法一:递归法

递归法的核心思想是:对于树中的每个节点,检查其左子树的最大值是否小于当前节点的值,以及其右子树的最小值是否大于当前节点的值。

  1. 如果树为空,则它是二叉搜索树。
  2. 对于当前节点,递归地检查其左子树的最大值是否小于当前节点的值,同时检查其右子树的最小值是否大于当前节点的值。
  3. 如果上述两个条件均满足,则递归地检查左子树和右子树是否都是二叉搜索树。

C语言实现

#include <stdio.h>
#include <stdlib.h>
#include <limits.h>typedef struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
} TreeNode;// 判断二叉树是否为搜索树
int isBSTUtil(struct TreeNode* node, int min, int max) {if (node == NULL) return 1;if (node->val < min || node->val > max) return 0;return isBSTUtil(node->left, min, node->val - 1) && isBSTUtil(node->right, node->val + 1, max);
}int isBST(TreeNode* root) {return isBSTUtil(root, INT_MIN, INT_MAX);
}// 创建新节点
TreeNode* newNode(int val) {TreeNode* node = (TreeNode*)malloc(sizeof(TreeNode));node->val = val;node->left = node->right = NULL;return node;
}int main() {TreeNode *root = newNode(4);root->left = newNode(2);root->right = newNode(5);root->left->left = newNode(1);root->left->right = newNode(3);if (isBST(root))printf("是搜索树\n");elseprintf("不是搜索树\n");return 0;
}

C++实现

#include <iostream>
#include <climits>using namespace std;struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};// 判断二叉树是否为搜索树
bool isBSTUtil(TreeNode* node, int min, int max) {if (node == NULL) return true;if (node->val < min || node->val > max) return false;return isBSTUtil(node->left, min, node->val - 1) && isBSTUtil(node->right, node->val + 1, max);
}bool isBST(TreeNode* root) {return isBSTUtil(root, INT_MIN, INT_MAX);
}int main() {TreeNode *root = new TreeNode(4);root->left = new TreeNode(2);root->right = new TreeNode(5);root->left->left = new TreeNode(1);root->left->right = new TreeNode(3);if (isBST(root))cout << "是搜索树" << endl;elsecout << "不是搜索树" << endl;return 0;
}

方法二:中序遍历法

中序遍历法的基本思想是:对二叉树进行中序遍历,遍历过程中检查当前节点的值是否大于前一个节点的值。如果是,则为搜索树;否则,不是搜索树。

C语言实现

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>typedef struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
} TreeNode;// 全局变量,用于记录前一个节点的值
int prev = INT_MIN;bool isBSTInorder(TreeNode* root) {if (root != NULL) {// 遍历左子树if (!isBSTInorder(root->left))return false;// 检查当前节点的值是否大于前一个节点的值if (root->val <= prev)return false;prev = root->val;// 遍历右子树return isBSTInorder(root->right);}return true;
}// 创建新节点
TreeNode* newNode(int val) {TreeNode* node = (TreeNode*)malloc(sizeof(TreeNode));node->val = val;node->left = node->right = NULL;return node;
}int main() {TreeNode *root = newNode(4);root->left = newNode(2);root->right = newNode(5);root->left->left = newNode(1);root->left->right = newNode(3);if (isBSTInorder(root))printf("是搜索树\n");elseprintf("不是搜索树\n");return 0;
}

C++实现

#include <iostream>
#include <climits>using namespace std;struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}
};// 全局变量,用于记录前一个节点的值
int prev = INT_MIN;bool isBSTInorder(TreeNode* root) {if (root == nullptr) return true;if (!isBSTInorder(root->left))return false;if (root->val <= prev)return false;prev = root->val;return isBSTInorder(root->right);
}int main() {TreeNode *root = new TreeNode(4);root->left = new TreeNode(2);root->right = new TreeNode(5);root->left->left = new TreeNode(1);root->left->right = new TreeNode(3);if (isBSTInorder(root))cout << "是搜索树" << endl;elsecout << "不是搜索树" << endl;return 0;
}

总结

本文详细介绍了如何判断一个二叉树是否为搜索树,包括递归法和中序遍历法两种实现方式。递归法通过比较节点与其子树的关系来判断,而中序遍历法则通过比较中序遍历的节点值来判断。两种方法各有优劣,可以根据实际需求选择合适的方法

http://www.lryc.cn/news/408058.html

相关文章:

  • golang长连接的误用
  • Springboot @Validate @Valid 基于复杂嵌套对象的参数校验示例
  • 算力共享下的,分级路由转发报文协议与通告
  • 滚动数组详解
  • C 语言动态链表
  • 【Leetcode】二十、记忆化搜索:零钱兑换
  • json数据格式 继续学习
  • gradle 构建项目添加版本信息
  • vue3 学习笔记17 -- 基于el-menu封装菜单
  • 使用 Redis 实现验证码、token 的存储,用自定义拦截器完成用户认证、并使用双重拦截器解决 token 刷新的问题
  • 反转链表 - 力扣(LeetCode)C语言
  • 【Linux】进程间通信(1):进程通信概念与匿名管道
  • Spring从入门到精通 01
  • C语言经典习题25
  • 2-47 基于matlab的时域有限差分法(FDTD法)拉夫等效原理进行时谐场外推
  • JupyterNotebook快捷键 自用
  • 【我的OpenGL学习进阶之旅】讲一讲GL_TEXTURE_2D和GL_TEXTURE_EXTERNAL_OES的区别
  • Makefile 如何将生成的 .o 文件放到指定文件夹
  • 聊一聊知识图谱结合RAG
  • Java面试锦集 之 一、Java基础(1)
  • 【leetcode】排列序列
  • 【Cesium开发实战】视频融合功能的实现,可自定义位置和视频路径
  • 【秋招笔试题】小明的美食
  • 基于OpenLCA、GREET、R语言的生命周期评价方法、模型构建及典型案例应用
  • Linux操作系统 -socket网络通信
  • 【苍穹】完美解决由于nginx更换端口号导致无法使用Websocket
  • Qt中在pro中实现一些宏定义
  • bash XXX.sh文件和直接运行XXX.sh的区别
  • 【Python机器学习】k-近邻算法简单实践——改进约会网站的配对效果
  • vue3前端开发-小兔鲜项目-登录组件的开发表单验证