当前位置: 首页 > news >正文

均匀圆形阵列原理及MATLAB仿真

均匀圆形阵列原理及MATLAB仿真

目录

前言

一、均匀圆阵原理

二、圆心不存在阵元方向图仿真

三、圆心存在阵元方向图仿真

四、MATLAB仿真代码

总结


前言

        本文详细推导了均匀圆形阵列的方向图函数,对圆心不放置阵元和圆心放置阵元的均匀圆形阵列方向图都进行了仿真,仿真结果表面本文推导的方向图函数无误。


提示:以下是本篇文章正文内容,希望能帮助到各位,转载请附上链接。

一、均匀圆阵原理

      在半径 R 的圆周上均匀分布着 M 个阵元,构成均匀圆阵列天线,如下图所示。  

        假设坐标原点设在圆心O,第 m 个阵元与圆心之间的连线与 x 轴的夹角为

\phi _{m}=2\pi m/M

其位置向量表达式为

\textbf{P}_m=(R\cos\phi_m,R\sin\phi_m,0)

        设一窄带平面波以(\phi,\theta)的方向入射到该均匀圆阵。信号的方位角\phi\in[0,2\pi]是从 x 轴沿逆时针方向到信号入射方向在阵列平面上投影的夹角,俯仰角\theta\in[0,\pi/2]为 z 轴与信号入射方向的夹角。以圆心O为参考点,则波达方向矢量为

\textbf{r}=(-\sin\theta\cos\phi,-\sin\theta\sin\phi,-\cos\theta)

\textbf{P}_m\textbf{r}上的投影为

\textbf{P}_m \cdot \textbf{r}=-R(\cos\phi_m\sin\theta\cos\phi+\sin\phi_m\sin\theta\sin\phi)\\ =-R\sin\theta \cos(\phi-\phi_m)

原点与阵元 m 接收到的信号包络之间的相位差是:

\Delta\phi_m=-\frac{2\pi}{\lambda}\textbf{P}_m\cdot \textbf{r}=-\frac{2\pi}{\lambda}R\sin\theta\cos(\phi-\phi_m)

        设阵列波束的最大值指向为(\phi_0,\theta_0),则第m阵元的激励相位为

\alpha_m=\frac{2\pi}\lambda R\sin\theta_0\cos(\phi_0-\phi_m)

那么,均匀圆阵天线的方向图函数可以直接用阵列因子表示,即方向图函数为:

F(\phi,\theta)=\sum_{m=0}^{M-1}A_me^{-j\frac{2\pi}{\lambda}R\sin\theta\cos(\phi-\phi_m)+j\alpha_m}=\\\sum_{m=0}^{M-1}A_me^{j\frac{2\pi}{\lambda}R[-\sin\theta\cos(\phi-\phi_m)+\sin\theta_0\cos(\phi_0-\phi_m)]}

其中,A_m是第m阵元的激励幅度。

二、圆心不存在阵元方向图仿真

        设一均匀圆形阵列,圆的半径 R = 2λ ,圆环上均匀分布了 24 个各向同性的天线阵元,此时两阵元间的距离约为λ / 2。令其指向方位角180° ,俯仰角30° ,采用MATLAB程序得出阵列的三维方向图如下所示:

        上面分别给出了均匀圆阵的三维方向图、俯仰角在30° 时的方位角方向图和方位角在180° 时的俯仰角方向图。相比于均匀线阵,均匀圆阵具有平面阵列的结构,从而可以估计波达方向的方位角和俯仰角。由图可以看出,均匀圆阵列天线方向图的旁瓣电平较高,第一旁瓣电平比主瓣电平只低了 8 dB。这是由圆形阵列自身的非线性引起的,这是均匀圆阵的一个固有特性。要改善这种情况,比较直接的方法是采用同心圆环阵或在圆阵列天线中心处添加一个阵元。

三、圆心存在阵元方向图仿真

        圆心存在阵元:

        设中心存在阵元的均匀圆形阵列由 25 个阵元组成。阵列半径 R = 2λ ,圆心上分布 1 个阵元,圆环上均匀分布了 24 个各向同性的阵元,此时圆环上两阵元的直线距离约为λ / 2。令其指向方位角180° ,俯仰角30° ,采用 Matlab 程序得出阵列的三维方向图如下:

        上面分别给出了中心存在阵元的均匀圆阵三维方向图、把俯仰角固定在30°时的方位角方向图和把方位角固定在180°时的俯仰角方向图。由上图可以看出,中心存在阵元的均匀圆形阵列的第一副瓣电平要比主瓣电平低了9dB左右,并保持了均匀圆阵固有的性质,是一种较好的阵列形式。

四、MATLAB仿真代码

https://download.csdn.net/download/m0_66360845/89583319icon-default.png?t=N7T8https://download.csdn.net/download/m0_66360845/89583319


总结

         本文详细推导了均匀圆形阵列的方向图函数,对圆心不放置阵元和圆心放置阵元的均匀圆形阵列方向图都进行了仿真,仿真结果表面本文推导的方向图函数无误。

http://www.lryc.cn/news/407681.html

相关文章:

  • vue2使用univerjs
  • VUE3 el-table-column header新增必填*
  • 条件概率和贝叶斯公式
  • Kali中docker与docker-compose的配置
  • C++ | Leetcode C++题解之第283题移动零
  • Exponential Moving Average (EMA) in Stable Diffusion
  • 017、Vue动态tag标签
  • RocketMQ 架构概览
  • 优化医疗数据管理:Kettle ETL 数据采集方案详解
  • spring-from表单
  • 【.NET】asp.net core 程序重启容器后redis无法连接,连接超时
  • 【vue前端项目实战案例】Vue3仿今日头条App
  • 常见的文心一言的指令
  • 数字货币交易接口实现(含源代码)
  • c++函数以及函数分文件编写
  • 【JVM基础06】——组成-直接内存详解
  • 学术研讨 | 区块链与隐私计算领域专用硬件研讨会顺利召开
  • AngularJS API 深入解析
  • 过某开源滑动验证码
  • 一文解决 | Linux(Ubuntn)系统安装 | 硬盘挂载 | 用户创建 | 生信分析配置
  • Matlab M_map工具箱绘制Interrupted Mollweide Projection
  • Python 变量与基本数据类型
  • Pytorch深度学习实践(5)逻辑回归
  • 认识漏洞-GitLab 远程命令执行漏洞、致远OA-ajax.do未授权任意文件上传漏洞
  • vue实现电子签名、图片合成、及预览功能
  • 【flink】之如何消费kafka数据?
  • 科研绘图系列:R语言山脊图(Ridgeline Chart)
  • Boost搜索引擎:如何建立 用户搜索内容 与 网页文件内容 之间的关系
  • 【QT】QT 窗口(菜单栏、工具栏、状态栏、浮动窗口、对话框)
  • Golang | Leetcode Golang题解之第283题移动零