当前位置: 首页 > news >正文

最短路径 | 743. 网络延迟时间之 Dijkstra 算法和 Floyd 算法

目录

    • 1 基于 Dijkstra 算法
      • 1.1 代码说明
      • 1.2 完整代码
    • 2 基于 Floyd 算法
      • 2.1 代码说明
      • 2.2 完整代码


前言:我在做「399. 除法求值」时,看到了基于 Floyd 算法的解决方案,突然想起来自己还没有做过最短路径相关的题。因此找来了「743. 网络延迟时间」作为练习,其本质是在求解一个源点到其他各点的最短路径。



1 基于 Dijkstra 算法

假设源点为 2 \mathrm{2} 2,那么手工模拟如下图所示:

在这里插入图片描述

代码的编写在本质上就是实现上述手工模拟过程。



1.1 代码说明

为了表示两点之间没有路径,我们定义两点之间的距离为无穷大:

const int inf = INT_MAX / 2;

说明:这里只是对 i n f \mathrm{inf} inf 进行定义,后面才会进行使用;为什么不直接定义为 i n f = I N T − M A X \mathrm{inf = INT_{-}MAX} inf=INTMAX?因为在更新距离时涉及加法操作,而 I N T − M A X \mathrm{INT_{-}MAX} INTMAX 可能让加法越界,所以我们取其一半来表示无穷大。

Step1:构建图

由于题目通常给出的是边的起点、终点以及权值,而非存储了图结构的二维数组,因此无论是 Dijkstra 算法还是 Floyd 算法,我们都需要完成图的构建。代码如下:

vector<vector<int>> graph(n + 1, vector<int>(n + 1, inf));
for (auto & t : times)graph[t[0]][t[1]] = t[2];

逻辑非常简单:① 创建一个二维数组 g r a p h \mathrm{graph} graph;② g r a p h [ i ] [ j ] \mathrm{graph[i][j]} graph[i][j] 表示边 < i , j > \mathrm{<i, j>} <i,j> 的权值。

说明:初始时如果两点之间没有边,那么认为两点之间的距离为 i n f \mathrm{inf} inf 无穷大。

Step2:定义数组

vector<int> dist(n + 1, inf);
dist[k] = 0;
vector<int> used(n + 1, 0);
  • d i s t \mathrm{dist} dist 数组用于存储每一轮源点 k \mathrm{k} k 到其他点的距离;
  • u s e d \mathrm{used} used 数组用于表明当前点是否已经被纳入集合。

说明:由于 k \mathrm{k} k 到自己的距离为 0 \mathrm{0} 0,因此有 d i s t [ k ] = 0 \mathrm{dist[k] = 0} dist[k]=0;为什么不直接让 u s e d [ k ] = 1 \mathrm{used[k] = 1} used[k]=1?由于在纳入每个点时都会更新源点 k \mathrm{k} k 到其他点的距离,因此我们在初始时并不直接将 k \mathrm{k} k 纳入集合,而是放到后面和其他点统一处理,从而避免了需要在初始时更新 d i s t \mathrm{dist} dist 数组的值的问题。

Step3:纳入并更新距离

for (int i = 1; i <= n; ++i) {// 查找距离源点最近的点int s = -1;for (int t = 1; t <= n; ++t) {if (!used[t] && (s == -1 || dist[s] > dist[t]))s = t;}// 纳入该点used[s] = 1;// 更新距离for (int j = 1; j <= n; ++j)dist[j] = min(dist[j], dist[s] + graph[s][j]);
}

其中 s \mathrm{s} s 用于查找当前距离源点最近的点, t \mathrm{t} t 用于遍历所有未被纳入的点。

说明:由于初始时只有 d i s t [ k ] = 0 \mathrm{dist[k] = 0} dist[k]=0,而其他距离被默认为 i n f \mathrm{inf} inf 无穷大,因此第一个被纳入的一定是源点 k \mathrm{k} k

Step4:返回结果

由于题目提问「需要多久才能使所有节点都收到信号」,因此我们返回源点 k \mathrm{k} k 到其他点的最短距离的最大值即可。代码如下:

int ans = * max_element(dist.begin() + 1, dist.end());
return ans == inf ? -1 : ans;

如果最大值是 i n f \mathrm{inf} inf,那么说明源点 k \mathrm{k} k 无法到达某些点,因此返回 − 1 \mathrm{-1} 1



1.2 完整代码

int networkDelayTime(vector<vector<int>>& times, int n, int k) {const int inf = INT_MAX / 2;vector<vector<int>> graph(n + 1, vector<int>(n + 1, inf));for (auto & t : times)graph[t[0]][t[1]] = t[2];vector<int> dist(n + 1, inf);dist[k] = 0;vector<int> used(n + 1, 0);for (int i = 1; i <= n; ++i) {int s = -1;for (int t = 1; t <= n; ++t) {if (!used[t] && (s == -1 || dist[s] > dist[t]))s = t;}used[s] = 1;for (int j = 1; j <= n; ++j)dist[j] = min(dist[j], dist[s] + graph[s][j]);}int ans = * max_element(dist.begin() + 1, dist.end());return ans == inf ? -1 : ans;
}


2 基于 Floyd 算法

在这里插入图片描述

说明:上图只是给出一个示例,并没有把整个更新过程画完整,请自行脑补。



2.1 代码说明

Step1:构建图(与 Dijkstra 算法一致)

Step2:更新距离

Floyd 算法的核心:不断尝试在点 i \mathrm{i} i 和点 j \mathrm{j} j 之间加入其他点 k \mathrm{k} k 作为中间点,如果加入 k \mathrm{k} k 之后的距离比加入 k \mathrm{k} k 之前的距离短,那么就更新点 i \mathrm{i} i 和点 j \mathrm{j} j 之间的距离。重复上述操作 n \mathrm{n} n 次,即可计算出任意两点之间的最短路径。

for (int k = 1; k <= n; ++k) {for (int i = 1; i <= n; ++i) {for (int j = 1; j <= n; ++j) {if (graph[i][k] >= 0 && graph[k][j] >= 0)graph[i][j] = graph[i][j] >= 0 ?min(graph[i][j], graph[i][k] + graph[k][j]): graph[i][k] + graph[k][j];}}
}

注意:中间点 k \mathrm{k} k 必须在最外层循环,否则一些路径无法被更新到;为什么判断条件是 > = 0 \mathrm{>= 0} >=0?因为题目给出的边的权值的范围为 [ 0 , 100 ] \mathrm{[0,100]} [0,100],所以需要包含 0 \mathrm{0} 0

Step3:返回结果

int ans = -1;
for (int j = 1; j <= n; ++j) {if (graph[k][j] == -1 && k != j)return -1;else if (k != j)ans = max(ans, graph[k][j]);
}
return ans;

由于我们只需要源点 k \mathrm{k} k 到其他点的距离,因此只需要遍历 g r a p h \mathrm{graph} graph 中的第 k \mathrm{k} k 行。

说明:由于我们在本方案中定义两点之间没有路径时的边的权值为 − 1 \mathrm{-1} 1,因此只要 g r a p h [ k ] [ j ] = = − 1 \mathrm{graph[k][j] == -1} graph[k][j]==1,就说明源点 k \mathrm{k} k 无法到达点 j \mathrm{j} j,因此返回 − 1 \mathrm{-1} 1



2.2 完整代码

int networkDelayTime(vector<vector<int>>& times, int n, int k) {vector<vector<int>> graph(n + 1, vector<int>(n + 1, -1));for (auto & t : times)graph[t[0]][t[1]] = t[2];for (int k = 1; k <= n; ++k) {for (int i = 1; i <= n; ++i) {for (int j = 1; j <= n; ++j) {if (graph[i][k] >= 0 && graph[k][j] >= 0)graph[i][j] = graph[i][j] >= 0 ?min(graph[i][j], graph[i][k] + graph[k][j]): graph[i][k] + graph[k][j];}}}int ans = -1;for (int j = 1; j <= n; ++j) {if (graph[k][j] == -1 && k != j)return -1;else if (k != j)ans = max(ans, graph[k][j]);}return ans;
}

虽然 Floyd 算法写起来没有 Dijkstra 算法繁琐,但是针对该问题的时间复杂度更高。



http://www.lryc.cn/news/405513.html

相关文章:

  • LLM模型与实践之基于 MindSpore 实现 BERT 对话情绪识别
  • 单例模式学习cpp
  • 第5讲:Sysmac Studio中的硬件拓扑
  • 使用GoAccess进行Web日志可视化
  • GD 32 流水灯
  • 数据结构之栈详解
  • 算法:BFS解决 FloodFill 算法
  • Python 中文双引号 “”
  • 以太网(Ethernet)
  • Scrcpy adb server version (41) doesn‘t match this client (39); killing...
  • 微服务实战系列之玩转Docker(四)
  • 微信小程序-自定义组件生命周期
  • 2024年7月23日(samba DNS)
  • Hyperledger顶级项目特点和介绍
  • 操作系统——笔记(1)
  • isEmpty() 和 isBlank()的区别
  • scrapy生成爬虫数据为excel
  • vscode debug C++无法输入问题
  • MODBUS tcp学习总结
  • 【第一天】计算机网络 TCP/IP模型和OSI模型,从输入URL到页面显示发生了什么
  • 发现FionaAI:免费体验最新的GPT-4o Mini模型!
  • Linux Gui 窗口对话和窗口操作
  • 人工智能驾驶技术:引领未来道路
  • 管理的核心是管人,管人的核心就是这3条,看懂的是高手
  • 代码解读:Diffusion Models中的长宽桶技术(Aspect Ratio Bucketing)
  • Linux下如何使用GitLab进行团队协作
  • 无法连接到internet怎么办?已连接但无internet访问,其实并不难
  • 建投数据人力资源系列产品获得欧拉操作系统及华为鲲鹏技术认证书
  • 【iOS】——属性关键字的底层原理
  • 电影类平台如何选择服务器