当前位置: 首页 > news >正文

AI学习指南机器学习篇-t-SNE模型应用与Python实践

AI学习指南机器学习篇-t-SNE模型应用与Python实践

在机器学习领域,数据的可视化是非常重要的,因为它可以帮助我们更好地理解数据的结构和特征。而t-SNE(t-distributed Stochastic Neighbor Embedding)是一种非常强大的降维和可视化技术,它可以将高维数据映射到低维空间,并在保持数据结构的同时展现出数据的内在特征。在本篇博客中,我们将介绍如何使用Python中的相关库来实现t-SNE算法,包括数据准备、模型训练和降维可视化。

t-SNE简介

t-SNE是由Geoffrey Hinton和Laurens van der Maaten在2008年提出的一种非线性降维技术,它能够将高维数据映射到低维空间。与其他降维技术(如PCA)不同的是,t-SNE在保持数据结构的同时,更注重于保持数据点之间的局部相似性。这使得t-SNE在可视化高维数据时非常有效,能够展现数据的内在结构和特征。

t-SNE模型应用与Python实践

在Python中,我们可以使用一些机器学习的库来实现t-SNE算法,比如Scikit-learn和TensorFlow等。下面我们将介绍如何使用这些库来进行数据准备、模型训练和降维可视化。

数据准备

首先,我们需要准备一个数据集来进行t-SNE算法的实践。在这里,我们将使用Scikit-learn库中自带的iris数据集作为示例。iris数据集包含了150个样本,其中包括了鸢尾花的四个特征(花萼长度、花萼宽度、花瓣长度和花瓣宽度)。接下来,我们将使用Python代码加载并可视化这个数据集。

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import datasets# 加载iris数据集
iris = datasets.load_iris()
X = iris.data
y = iris.target# 可视化数据集
plt.scatter(X[:, 0], X[:, 1], c=y, cmap="viridis")
plt.xlabel("Sepal length")
plt.ylabel("Sepal width")
plt.show()

运行以上代码,我们可以得到一个散点图,展示了iris数据集中花萼长度和花萼宽度的分布情况。接下来,我们将使用t-SNE算法来将这个高维数据映射到二维空间,并对其进行可视化。

模型训练

在这里,我们将使用Scikit-learn库中的t-SNE算法来对iris数据集进行降维。代码如下:

from sklearn.manifold import TSNE# 使用t-SNE算法进行降维
tsne = TSNE(n_components=2, random_state=0)
X_tsne = tsne.fit_transform(X)# 可视化降维后的数据
plt.scatter(X_tsne[:, 0], X_tsne[:, 1], c=y, cmap="viridis")
plt.xlabel("t-SNE feature 1")
plt.ylabel("t-SNE feature 2")
plt.show()

运行以上代码,我们可以得到一个二维散点图,展示了通过t-SNE算法降维后的iris数据集。从图中我们可以看到,不同类别的花在t-SNE映射后被很好地区分开来,这表明t-SNE成功地保持了数据的结构和特征。

降维可视化

在实际应用中,我们通常希望能够将降维后的数据以更直观的方式展现出来,比如通过可视化图表或者动态交互式图表。在这里,我们将使用matplotlib库和seaborn库来展示降维后的数据。代码如下:

import seaborn as sns# 将降维后的数据添加到DataFrame中
df = pd.DataFrame({"t-SNE feature 1": X_tsne[:, 0], "t-SNE feature 2": X_tsne[:, 1], "class": y})
df["class"] = df["class"].astype("category")# 绘制t-SNE可视化图表
sns.scatterplot(data=df, x="t-SNE feature 1", y="t-SNE feature 2", hue="class", palette="viridis")
plt.show()

运行以上代码,我们可以得到一个带有类别颜色的t-SNE可视化图表。从图表中我们可以更清晰地看到数据之间的分布情况,以及不同类别的花在降维后的空间中的分布情况。

总结

在本篇博客中,我们介绍了如何使用Python中的Scikit-learn库来实现t-SNE算法,并对其进行数据准备、模型训练和降维可视化。通过实际的数据集和代码示例,我们展示了t-SNE在降维和可视化高维数据方面的强大能力。希望本篇博客可以帮助读者更好地理解t-SNE算法,并在实际应用中更加灵活地运用它。

通过本文的介绍,读者可以了解到t-SNE算法的原理和应用,以及如何使用Python中的相关库来实现t-SNE算法。同时,通过实际的数据集和代码示例,读者也可以更加直观地感受到t-SNE在降维和可视化高维数据方面的强大能力。希望本篇博客能够帮助读者更好地掌握t-SNE算法,并在实际应用中更加灵活地运用它。

http://www.lryc.cn/news/403104.html

相关文章:

  • 小试牛刀-Telebot区块链游戏机器人
  • 使用github actions构建多平台electron应用
  • java通过pdf-box插件完成对pdf文件中图片/文字的替换
  • 鸿蒙 next 5.0 版本页面跳转传参 接受参数 ,,接受的时候 要先定义接受参数的类型, 代码可以直接CV使用 [教程]
  • 【electron6】浏览器实时播放PCM数据
  • 嵌入式C/C++、FreeRTOS、STM32F407VGT6和TCP:智能家居安防系统的全流程介绍(代码示例)
  • 【Django】django自带后台管理系统样式错乱,uwsgi启动css格式消失的问题
  • 解决npm install(‘proxy‘ config is set properly. See: ‘npm help config‘)失败问题
  • 汽车及零部件研发项目管理系统:一汽东机工选择奥博思 PowerProject 提升研发项目管理效率
  • Keil开发IDE
  • 数据结构与算法05堆|建堆|Top-k问题
  • 【精简版】jQuery 中的 Ajax 详解
  • win10删除鼠标右键选项
  • 分层评估的艺术:sklearn中的策略与实践
  • 排序系列 之 快速排序
  • 【银河麒麟服务器操作系统】java进程oom现象分析及处理建议
  • Redis的AOF持久化策略(AOF的工作流程、AOF的重写流程,操作演示、注意事项等)
  • 共享模型之无锁
  • 下载安装VSCode并添加插件作为仓颉编程入门编辑器
  • 解决:Linux上SVN 1.12版本以上无法直接存储明文密码
  • Mongodb多键索引中索引边界的混合
  • 如何利用windows本机调用Linux服务器,以及如何调用jupyter界面远程操控
  • 如何定位Milvus性能瓶颈并优化
  • 阿里云服务器 篇三:提交搜索引擎收录
  • powe bi界面认识及矩阵表基本操作 - 1
  • SpringBoot 项目 pom.xml 中 设置 Docker Maven 插件
  • k8s二次开发-kubebuiler一键式生成deployment,svc,ingress
  • Flutter 状态管理新境界:多Provider并行驱动UI
  • 标识符和关键字的区别是什么,常用的关键字有哪些?自增自减运算符,移位运算符continue、break、return的区别是什么?
  • 在VS Code上搭建Vue项目教程(Vue-cli 脚手架)