当前位置: 首页 > news >正文

时间复杂度计算

目录

时间复杂性

⼤O的渐进表⽰法 


时间复杂性

定义:在计算机科学中,算法的时间复杂度是⼀个函数式T(N),它定量描述了该算法的运⾏时间。

 

时间复杂度是衡量程序的时间效率,那么为什么不去计算程序的运⾏时间呢? 

1. 因为程序运⾏时间和编译环境和运⾏机器的配置都有关系,⽐如同⼀个算法程序,⽤⼀个⽼编译 器进⾏编译和新编译器编译,在同样机器下运⾏时间不同。

2. 同⼀个算法程序,⽤⼀个⽼低配置机器和新⾼配置机器,运⾏时间也不同。

3. 并且时间只能程序写好后测试,不能写程序前通过理论思想计算评估。 

所以时间复杂度只能粗估,不能用来精确的进行计算 

我们看一个实例:

// 请计算⼀下Func1中++count语句总共执⾏了多少 次?

void Func1(int N)
{
    int count = 0;
    for (int i = 0; i < N; ++i)
    {
        for (int j = 0; j < N; ++j)
        {
            ++count;
        }
    }
    for (int k = 0; k < 2 * N; ++k)
    {
        ++count;
    }
    int M = 10;
    while (M--)
    {
        ++count;
    }
}

 

 时间复杂度计算公式=每条语句的运行时间(不确定)*语句运行次数(确定)

根据上述公式

我们可以得出示例:

                T(N)=N^2+2N+10

在N取不同值时,时间复杂度的粗估值也不同

时间复杂的经典实例:

实例1

void Func2(int N)
{
int count = 0;
for (int k = 0; k < 2 * N ; ++ k)
{
++count;
}
int M = 10;
while (M--)
{
++count;
}
printf("%d\n", count);
}

 



实例二

void Func3(int N, int M)
{
int count = 0;
for (int k = 0; k < M; ++ k)
{
++count;
}
for (int k = 0; k < N ; ++
k)
{
++count;
}
printf("%d\n", count);
}

 


实例3:

void Func4(int N)
{
int count = 0;
for (int k = 0; k < 100; ++ k)
{
++count;
}
printf("%d\n", count);
}


实例4:

const char * strchr ( const char
* str, int character)
{
const char* p_begin = s;
while (*p_begin != character)
{
if (*p_begin == '\0')
return NULL;
p_begin++;
}
return p_begin;
}

 


 

实例5:

void BubbleSort(int* a, int n)
{
assert(a);
for (size_t end = n; end > 0; --end)
{
int exchange = 0;
for (size_t i = 1; i < end; ++i)
{
if (a[i-1] > a[i])
{
Swap(&a[i-1], &a[i]);
exchange = 1;
}
}
if (exchange == 0)
break;
}
}

 


 

实例6

void func5(int n)
{
int cnt = 1;
while (cnt < n)
{
cnt *= 2;
}
}

 


 

实例7


 


 

⼤O的渐进表⽰法 

规则:

1.时间复杂度函数式T(N)中,只保留最⾼阶项,去掉那些低阶项,因为当N不断变⼤时, 低阶项对结果影响越来越⼩,当N⽆穷⼤时,就可以忽略不计了。

2. 如果最⾼阶项存在且不是1,则去除这个项⽬的常数系数,因为当N不断变⼤,这个系数 对结果影响越来越⼩,当N⽆穷⼤时,就可以忽略不计了。

3. T(N)中如果没有N相关的项⽬,只有常数项,⽤常数1取代所有加法常数。

各位不妨自行根据规则来对将T(N)改成O(N)

答案:FUNT1:O(N)

FUNT2:O(N)

FUNT3:O(1)

FUNT4:

1.O(1)

2.O(N)

3.O(N)

FUNT5:

1.O(1) 

2.O(N^2)

FUNT6:O(logn)

FUNT7:O(n) 

http://www.lryc.cn/news/400411.html

相关文章:

  • React 18 + Babel 7 + Webpack 5 开发环境搭建
  • MongoDB Shard 集群 Docker 部署
  • MacOS 开发 — Packages 程序 macOS新版本 演示选项卡无法显示
  • Hive的分区表分桶表
  • PostgreSQL17索引优化之支持并行创建BRIN索引
  • 在Vue中,子组件向父组件传递数据
  • 数据结构(顺序表)
  • MySQL之基本查询(上)-表的增删查改
  • RocketMQ源码学习笔记:Producer发送消息流程
  • kotlin flow collect collectLatest 区别
  • ELK集群搭建
  • zookeeper+kafka消息队列集群部署
  • LLM_入门指南(零基础搭建大模型)
  • Element Plus 与 Vue 3:构建现代化 Web 应用的完美搭档
  • 线程间通信与变量修改感知:几种常用方法
  • 前后端通信 —— HTTP/HTTPS
  • 人工智能 (AI) 应用:一个高精度ASD 诊断和照护支持系统
  • C# 1.方法
  • 【C++进阶学习】第七弹——AVL树——树形结构存储数据的经典模块
  • px,em,rem之间的关系换算
  • HTTP——POST请求详情
  • 外包干了1个月,技术明显退步。。。
  • LeetCode加油站(贪心算法/暴力,分析其时间和空间复杂度)
  • 5.1 软件工程基础知识-软件工程概述
  • HttpUtil工具
  • 并发编程-锁的分类
  • K8S系列-Kubernetes基本概念及Pod、Deployment、Service的使用
  • 在VSCode上创建Vue项目详细教程
  • Go语言入门之流程控制简述
  • 接口测试框架基于模板自动生成测试用例!