当前位置: 首页 > news >正文

人工智能算法工程师(中级)课程9-PyTorch神经网络之全连接神经网络实战与代码详解

大家好,我是微学AI,今天给大家介绍一下人工智能算法工程师(中级)课程9-PyTorch神经网络之全连接神经网络实战与代码详解。本文将给大家展示全连接神经网络与代码详解,包括全连接模型的设计、数学原理介绍,并从手写数字识别到猫狗识别实战演练。

文章目录

  • 一、引言
  • 二、全连接模型的设计
    • 1. 神经元模型
    • 2. 网络结构
  • 三、全连接模型的参数计算
    • 1. 前向传播
    • 2. 反向传播
  • 四、全连接模型实现手写数字识别
    • 1. 数据准备
    • 2. 模型构建
    • 3. 代码实现
  • 五、阶段实战:猫狗识别
    • 1. 数据准备
    • 2. 模型构建
    • 3. 代码实现
  • 六、数学原理详解
    • 1. 激活函数
    • 2. 损失函数
    • 3. 优化算法
  • 七、总结

一、引言

全连接神经网络(Fully Connected Neural Network,FCNN)是一种经典的神经网络结构,它在众多领域都有着广泛的应用。本文将详细介绍全连接神经网络的设计、参数计算及其在图像识别任务中的应用。通过本文的学习,读者将掌握全连接神经网络的基本原理,并能够实现手写数字识别和猫狗识别等实战项目。

二、全连接模型的设计

1. 神经元模型

全连接神经网络的基本单元是神经元,其数学表达式为:
f ( x ) = σ ( ∑ i = 1 n w i x i + b ) f(x) = \sigma(\sum_{i=1}^{n}w_ix_i + b) f(x)=σ(i=1nwixi+b)
其中, x x x 为输入向量, w w w 为权重向量, b b b 为偏置, σ \sigma σ 为激活函数。

2. 网络结构

全连接神经网络由输入层、隐藏层和输出层组成。每一层的神经元都与上一层的所有神经元相连,如图1所示。
在这里插入图片描述

三、全连接模型的参数计算

1. 前向传播

假设一个全连接神经网络共有 l l l层,第 k k k层的输入为 X ( k ) X^{(k)} X(k),输出为 Y ( k ) Y^{(k)} Y(k),则有:
Y ( k ) = σ ( W ( k ) X ( k ) + b ( k ) ) Y^{(k)} = \sigma(W^{(k)}X^{(k)} + b^{(k)}) Y(k)=σ(W(k)X(k)+b(k))
其中, W ( k ) W^{(k)} W(k) b ( k ) b^{(k)} b(k) 分别为第 k k k层的权重和偏置。

2. 反向传播

全连接神经网络的参数更新通过反向传播算法实现。对于输出层,损失函数为:
L = 1 2 ( Y t r u e − Y p r e d ) 2 L = \frac{1}{2}(Y_{true} - Y_{pred})^2 L=21(YtrueYpred)2
其中, Y t r u e Y_{true} Ytrue 为真实标签, Y p r e d Y_{pred} Ypred 为预测值。
根据链式法则,输出层的权重梯度为:
∂ L ∂ W ( l ) = ∂ L ∂ Y ( l ) ⋅ ∂ Y ( l ) ∂ Z ( l ) ⋅ ∂ Z ( l ) ∂ W ( l ) \frac{\partial L}{\partial W^{(l)}} = \frac{\partial L}{\partial Y^{(l)}} \cdot \frac{\partial Y^{(l)}}{\partial Z^{(l)}} \cdot \frac{\partial Z^{(l)}}{\partial W^{(l)}} W(l)L=Y(l)LZ(l)Y(l)W(l)Z(l)
其中, Z ( l ) = W ( l ) X ( l ) + b ( l ) Z^{(l)} = W^{(l)}X^{(l)} + b^{(l)} Z(l)=W(l)X(l)+b(l)
同理,可求得输出层的偏置梯度、隐藏层的权重梯度和偏置梯度。

四、全连接模型实现手写数字识别

1. 数据准备

使用MNIST数据集,包含60000个训练样本和10000个测试样本。

2. 模型构建

构建一个简单的全连接神经网络,包含一个输入层(784个神经元)、两个隐藏层(128个神经元)和一个输出层(10个神经元)。
在这里插入图片描述

3. 代码实现

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader# 定义模型
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.model = nn.Sequential(nn.Flatten(),nn.Linear(28*28, 128),nn.ReLU(),nn.Linear(128, 128),nn.ReLU(),nn.Linear(128, 10),nn.Softmax(dim=1))def forward(self, x):return self.model(x)# 加载数据
transform = transforms.Compose([transforms.ToTensor()])
dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
dataloader = DataLoader(dataset, batch_size=32, shuffle=True)test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=True)# 初始化模型和优化器
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()# 训练模型
for epoch in range(5):for i, (images, labels) in enumerate(dataloader):images, labels = images.to(device), labels.to(device)optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()# 评估模型
correct = 0
total = 0
with torch.no_grad():for images, labels in test_dataloader:images, labels = images.to(device), labels.to(device)outputs = model(images)_, predicted = torch.max(outputs.data, 1)total += labels.size(0)correct += (predicted == labels).sum().item()print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))

五、阶段实战:猫狗识别

1. 数据准备

使用猫狗数据集,包含25000张猫和狗的图片。我们将猫和狗的照片放在目录’data/train’下。

2. 模型构建

构建一个全连接神经网络,包含一个输入层(64643个神经元)、三个隐藏层(256、128、64个神经元)和一个输出层(2个神经元)。

3. 代码实现

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader# 定义数据预处理
data_transforms = transforms.Compose([transforms.Resize((64, 64)),transforms.RandomRotation(40),transforms.RandomHorizontalFlip(),transforms.RandomVerticalFlip(),transforms.RandomAffine(0, translate=(0.2, 0.2), scale=(0.8, 1.2)),transforms.ToTensor(),
])# 加载数据
train_dataset = datasets.ImageFolder('data/train', transform=data_transforms)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)# 定义模型
class Net(nn.Module):def __init__(self):super(Net, self).__init__()self.model = nn.Sequential(nn.Flatten(),nn.Linear(64*64*3, 256),nn.ReLU(),nn.Linear(256, 128),nn.ReLU(),nn.Linear(128, 64),nn.ReLU(),nn.Linear(64, 1),nn.Sigmoid())def forward(self, x):return self.model(x)# 初始化模型和优化器
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = Net().to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.BCELoss()# 训练模型
for epoch in range(15):for i, (images, labels) in enumerate(train_loader):images, labels = images.to(device), labels.float().unsqueeze(1).to(device)optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()# 评估模型
# 假设有一个测试数据集的加载器叫做 validation_loader
correct = 0
total = 0
with torch.no_grad():for images, labels in validation_loader:images, labels = images.to(device), labels.to(device)outputs = model(images)predicted = (outputs > 0.5).float()total += labels.size(0)correct += (predicted == labels).sum().item()
print('Accuracy of the network on the test images: %d %%' % (100 * correct / total))

六、数学原理详解

1. 激活函数

激活函数用于引入非线性因素,使得神经网络能够学习和模拟复杂函数。常用的激活函数有:

  • Sigmoid函数: σ ( x ) = 1 1 + e − x \sigma(x) = \frac{1}{1 + e^{-x}} σ(x)=1+ex1
  • ReLU函数: R e L U ( x ) = max ⁡ ( 0 , x ) ReLU(x) = \max(0, x) ReLU(x)=max(0,x)
  • Softmax函数: s o f t m a x ( x ) i = e x i ∑ j e x j softmax(x)_i = \frac{e^{x_i}}{\sum_j e^{x_j}} softmax(x)i=jexjexi

2. 损失函数

损失函数用于衡量模型预测值与真实值之间的差异。常用的损失函数有:

  • 均方误差(MSE): M S E ( y , y ^ ) = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 MSE(y, \hat{y}) = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2 MSE(y,y^)=n1i=1n(yiy^i)2
  • 交叉熵损失:对于二分类问题, C E ( y , y ^ ) = − y log ⁡ ( y ^ ) − ( 1 − y ) log ⁡ ( 1 − y ^ ) CE(y, \hat{y}) = -y\log(\hat{y}) - (1-y)\log(1-\hat{y}) CE(y,y^)=ylog(y^)(1y)log(1y^)

3. 优化算法

优化算法用于更新网络的权重和偏置,以最小化损失函数。常用的优化算法有:

  • 梯度下降(Gradient Descent): w : = w − α ∂ L ∂ w w := w - \alpha \frac{\partial L}{\partial w} w:=wαwL
  • Adam优化器:结合了动量(Momentum)和自适应学习率(Adagrad)的优点。

七、总结

本篇文章从全连接神经网络的基本原理出发,介绍了全连接模型的设计、参数计算以及如何实现手写数字识别和猫狗识别。通过配套的完整可运行代码,读者可以更好地理解全连接神经网络的实现过程。在实际应用中,全连接神经网络虽然已被卷积神经网络(CNN)等更先进的网络结构所取代,但其基本原理仍然是深度学习领域的重要基石。希望本文能帮助读者深入掌握全连接神经网络,并为后续学习打下坚实的基础。

http://www.lryc.cn/news/399759.html

相关文章:

  • UDP网络通信(发送端+接收端)实例 —— Python
  • 从零开始实现大语言模型(五):缩放点积注意力机制
  • PTA 7-15 希尔排序
  • 【密码学】分组密码的设计原则
  • 深入解析【C++ list 容器】:高效数据管理的秘密武器
  • NFS服务器、autofs自动挂载综合实验
  • 自动驾驶事故频发,安全痛点在哪里?
  • SpringSecurity框架【认证】
  • python安全脚本开发简单思路
  • WPF学习(4) -- 数据模板
  • GuLi商城-商品服务-API-品牌管理-JSR303分组校验
  • PyTorch DataLoader 学习
  • TCP传输控制协议二
  • 【学习笔记】无人机(UAV)在3GPP系统中的增强支持(五)-同时支持无人机和eMBB用户数据传输的用例
  • 使用F1C200S从零制作掌机之debian文件系统完善NES
  • Vue 3 与 TypeScript:最佳实践详解
  • PyMysql error : Packet Sequence Number Wrong - got 1 expected 0
  • MVC 生成验证码
  • OSPF.综合实验
  • 云计算【第一阶段(29)】远程访问及控制
  • 2024前端面试真题【CSS篇】
  • python中设置代码格式,函数编写指南,类的编程风格
  • CentOS 8升级gcc版本
  • Kafka基础入门篇(深度好文)
  • C++之复合资料型态KU网址第二部V蒐NAY3989
  • 乡镇集装箱生活污水处理设备处理效率高
  • 计算机网络高频面试题
  • 进程通信(1):无名管道(pipe)
  • YOLOv10改进 | 损失函数篇 | SlideLoss、FocalLoss、VFLoss分类损失函数助力细节涨点(全网最全)
  • 【数组、特殊矩阵的压缩存储】