当前位置: 首页 > news >正文

CAS详解

文章目录

    • CAS
      • 使用示例
      • Unsafe类
      • 实现原理
      • CAS问题

CAS

CAS全称为Compare and Swap被译为比较并交换,是一种无锁算法。用于实现并发编程中的原子操作。CAS操作检查某个变量是否与预期的值相同,如果相同则将其更新为新值。CAS操作是原子的,这意味着在多个线程同时执行CAS操作时,不会发生竞争条件。

使用示例

java.util.concurrent.atomic并发包下的所有原子类都是基于CAS来实现的。

public class CASExample {public static void main(String[] args) {AtomicInteger atomicInteger = new AtomicInteger(0);int expectedValue = 0;int newValue = 1;boolean result = atomicInteger.compareAndSet(expectedValue, newValue);if (result) {System.out.println("更新成功,当前值:" + atomicInteger.get());} else {System.out.println("更新失败,当前值:" + atomicInteger.get());}}
}

CAS一些常见使用场景:

  • 使用CAS实现线程安全的计数器,避免传统锁的开销。
    private AtomicInteger counter = new AtomicInteger(0);public int increment() {int oldValue, newValue;do {oldValue = counter.get();newValue = oldValue + 1;} while (!counter.compareAndSet(oldValue, newValue));return newValue;
    }
    
  • 使用CAS来实现无锁队列、栈等数据结构。
    public class CASQueue<E> {private static class Node<E> {final E item;final AtomicReference<Node<E>> next = new AtomicReference<>(null);Node(E item) { this.item = item; }}private final AtomicReference<Node<E>> head = new AtomicReference<>(null);private final AtomicReference<Node<E>> tail = new AtomicReference<>(null);public void enqueue(E item) {Node<E> newNode = new Node<>(item);while (true) {Node<E> currentTail = tail.get();if (currentTail == null) {if (head.compareAndSet(null, newNode)) { tail.set(newNode); return; }} else {if (currentTail.next.compareAndSet(null, newNode)) { tail.compareAndSet(currentTail, newNode); return; }else { tail.compareAndSet(currentTail, currentTail.next.get()); }}}}public E dequeue() {while (true) {Node<E> currentHead = head.get();if (currentHead == null) { return null; }Node<E> nextNode = currentHead.next.get();if (head.compareAndSet(currentHead, nextNode)) { return currentHead.item; }}}}
    
  • 在数据库中,CAS可以用于实现乐观锁机制,避免长时间持有锁。
    public class OptimisticLocking {private AtomicInteger version = new AtomicInteger(0);public boolean updateWithOptimisticLock(int expectedVersion, Runnable updateTask) {int currentVersion = version.get();if (currentVersion != expectedVersion) { return false; }updateTask.run();return version.compareAndSet(currentVersion, currentVersion + 1);}public int getVersion() { return version.get(); }public static void main(String[] args) {OptimisticLocking lock = new OptimisticLocking();Runnable updateTask = () -> System.out.println("Performing update");int version = lock.getVersion();boolean success = lock.updateWithOptimisticLock(version, updateTask);if (success) { System.out.println("Update successful."); } else { System.out.println("Update failed."); }}
    }
    
  • 在实现线程池时,CAS可以用于安全地管理线程状态和任务队列。
    public class CASThreadPool {private static class Node<E> {final E item;final AtomicReference<Node<E>> next = new AtomicReference<>(null);Node(E item) { this.item = item; }}private final AtomicReference<Node<Runnable>> head = new AtomicReference<>(null);private final AtomicReference<Node<Runnable>> tail = new AtomicReference<>(null);public void submitTask(Runnable task) {Node<Runnable> newNode = new Node<>(task);while (true) {Node<Runnable> currentTail = tail.get();if (currentTail == null) {if (head.compareAndSet(null, newNode)) { tail.set(newNode); return; }} else {if (currentTail.next.compareAndSet(null, newNode)) { tail.compareAndSet(currentTail, newNode); return; }else { tail.compareAndSet(currentTail, currentTail.next.get()); }}}}public Runnable getTask() {while (true) {Node<Runnable> currentHead = head.get();if (currentHead == null) { return null; }Node<Runnable> nextNode = currentHead.next.get();if (head.compareAndSet(currentHead, nextNode)) { return currentHead.item; }}}
    }
    

Unsafe类

Unsafe是CAS的核心类,Java无法直接访问底层操作系统,而是通过native方法来访问。不过尽管如此,JVM还是开了一个后门,JDK中有一个类Unsafe,它提供了硬件级别的原子操作。

Unsafe类位于sun.misc包中,它提供了访问底层操作系统的特定功能,如直接内存访问、CAS 操作等。由于其提供了直接操作内存的能力,使用不当可能导致内存泄漏、数据损坏等问题,应谨慎使用。Unsafe类包含了许多不安全的操作,所以它并不是Java标准的一部分,而且在Java9开始已经标记为受限制的API。

Java中CAS操作的执行依赖于Unsafe类的方法,Unsafe类中的所有方法都是native修饰的,也就是说Unsafe类中的方法都直接调用操作系统底层资源执行相应任务。

public class UnsafeExample {private static final Unsafe unsafe;private static final long valueOffset;private volatile int value = 0;static {try {Field field = Unsafe.class.getDeclaredField("theUnsafe");field.setAccessible(true);unsafe = (Unsafe) field.get(null);valueOffset = unsafe.objectFieldOffset(UnsafeExample.class.getDeclaredField("value"));} catch (Exception e) {throw new Error(e);}}public void increment() {int current;do {current = unsafe.getIntVolatile(this, valueOffset);} while (!unsafe.compareAndSwapInt(this, valueOffset, current, current + 1));}}

实现原理

AtomicInteger原子整型类为例,来看一下CAS实现原理。

public class MainTest {public static void main(String[] args) {new AtomicInteger().compareAndSet(1,2);}
}

调用栈如下:

compareAndSet--> unsafe.compareAndSwapInt---> unsafe.compareAndSwapInt--> (C++) cmpxchg

AtomicInteger内部方法都是基于Unsafe类实现的。

Unsafe是CAS的核心类,Java无法直接访问底层操作系统,而是通过native方法来访问。不过尽管如此,JVM还是开了一个后门,JDK中有一个类Unsafe,它提供了硬件级别的原子操作。

// setup to use Unsafe.compareAndSwapInt for updates
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;
private volatile int value;static {try {valueOffset = unsafe.objectFieldOffset(AtomicInteger.class.getDeclaredField("value"));} catch (Exception ex) { throw new Error(ex); }
}public final boolean compareAndSet(int expect, int update) {return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}

compareAndSwapInt方法参数:

  • thisUnsafe对象本身,需要通过这个类来获取 value 的内存偏移地址;
  • valueOffsetvalueOffset 表示的是变量值在内存中的偏移地址,因为 Unsafe 就是根据内存偏移地址获取数据的原值的。
  • expect:当前预期的值;
  • update:要设置的新值;

继续向底层深入,就会看到Unsafe类中的一些其他方法:

public final class Unsafe {// ...public final native boolean compareAndSwapObject(Object var1, long var2, Object var4, Object var5);public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5);public final native boolean compareAndSwapLong(Object var1, long var2, long var4, long var6);// ...
}

对应查看openjdkhotspot源码,src/share/vm/prims/unsafe.cpp

#define FN_PTR(f) CAST_FROM_FN_PTR(void*, &f){CC"compareAndSwapObject", CC"("OBJ"J"OBJ""OBJ")Z",  FN_PTR(Unsafe_CompareAndSwapObject)},{CC"compareAndSwapInt",  CC"("OBJ"J""I""I"")Z",      FN_PTR(Unsafe_CompareAndSwapInt)},{CC"compareAndSwapLong", CC"("OBJ"J""J""J"")Z",      FN_PTR(Unsafe_CompareAndSwapLong)},

最终在hotspot源码实现/src/share/vm/runtime/Atomic.cpp中都会调用统一的cmpxchg函数。

jbyte Atomic::cmpxchg(jbyte exchange_value, volatile jbyte*dest, jbyte compare_value) {assert (sizeof(jbyte) == 1,"assumption.");uintptr_t dest_addr = (uintptr_t) dest;uintptr_t offset = dest_addr % sizeof(jint);volatile jint*dest_int = ( volatile jint*)(dest_addr - offset);// 对象当前值jint cur = *dest_int;// 当前值cur的地址jbyte * cur_as_bytes = (jbyte *) ( & cur);// new_val地址jint new_val = cur;jbyte * new_val_as_bytes = (jbyte *) ( & new_val);// new_val存exchange_value,后面修改则直接从new_val中取值new_val_as_bytes[offset] = exchange_value;// 比较当前值与期望值,如果相同则更新,不同则直接返回while (cur_as_bytes[offset] == compare_value) {// 调用汇编指令cmpxchg执行CAS操作,期望值为cur,更新值为new_valjint res = cmpxchg(new_val, dest_int, cur);if (res == cur) break;cur = res;new_val = cur;new_val_as_bytes[offset] = exchange_value;}// 返回当前值return cur_as_bytes[offset];
}

从上述源码可以看出CAS操作通过CPU提供的原子指令cmpxchg来实现无锁操作,这个指令会保证在多个处理器同时访问和修改数据时的正确性。

CPU处理器速度远远大于在主内存中的速度,为了加快访问速度,现代CPU引入了多级缓存,如L1、L2、L3 级别的缓存,这些缓存离CPU越近就越快。这些缓存存储了频繁使用的数据,但在多处理器环境中,缓存的一致性成为了下一个问题。当CPU中某个处理器对缓存中的共享变量进行了操作后,其他处理器会有个嗅探机制。即将其他处理器共享变量的缓存失效,当其他线程读取时会重新从主内存中读取最新的数据,这是基于MESI缓存一致性协议来实现的。

在多线程环境中,CAS就是比较当前线程工作内存中的值和主内存中的值,如果相同则执行规定操作,否则继续比较,直到主内存和当前线程工作内存中的值一致为止。每个CPU核心都有自己的缓存,用于存储频繁访问的数据。当一个线程在某个CPU核心上修改了共享变量的值时,其他CPU核心上缓存中的该变量会被标记为无效,这样其他线程再访问该变量时就会重新从主内存中获取最新值,从而保证了数据的一致性。CAS操作通过CPU提供的原子指令cmpxchg来比较和交换变量的值,它的原子性和线程安全性依赖于CPU的硬件支持和缓存一致性协议的保障。

在这里插入图片描述

所以当执行CAS方法时,读取变量当前的值,并与预期值进行比较。如果变量的当前值等于预期值,则将其更新为新值。如果变量的当前值不等于预期值,则不执行更新操作。注意CAS操作是原子的,即整个过程不会被其他线程打断。

public final int getAndAddInt(Object var1, long var2, int var4) {int var5;do {var5 = this.getIntVolatile(var1, var2);} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));return var5;
}

CAS问题

  • 循环时间长开销:CAS操作在失败时会进行自旋重试,即反复尝试CAS操作直到成功或达到一定的重试次数。自旋次数过多可能会影响性能,因此在使用CAS时需要权衡自旋次数和性能之间的关系。例如getAndAddInt方法执行,如果CAS失败会一直会进行尝试,如果CAS长时间不成功,可能会给CPU带来很大的开销。
    public final int getAndAddInt(Object var1, long var2, int var4) {int var5;do {var5 = this.getIntVolatile(var1, var2);} while(!this.compareAndSwapInt(var1, var2, var5, var5 + var4));return var5;
    }
    
  • 原子性问题:CAS操作本身是原子的,即在执行过程中不会被中断。但需要注意的是,CAS操作是针对单个变量的原子操作,而对于判断某个变量的值并根据结果进行另外的操作,需要额外的控制确保整体的原子性。这个时候就可以用锁来保证原子性,但是Java从1.5开始JDK提供了AtomicReference类来保证引用对象之间的原子性,可以把多个变量放在一个对象里来进行CAS操作。
    public class AtomicReferenceSimpleExample {static class DataObject {private int var1;private String var2;public DataObject(int var1, String var2) {this.var1 = var1;this.var2 = var2;}}public static void main(String[] args) {// 创建一个 AtomicReference 实例,并初始化为一个 DataObject 对象AtomicReference<DataObject> atomicRef = new AtomicReference<>(new DataObject(1, "Initial"));// 执行 CAS 操作,修改 DataObject 对象的属性atomicRef.updateAndGet(data -> {data.setVar1(data.getVar1() + 10);data.setVar2("Updated");return data;});// 获取修改后的值DataObject updatedObject = atomicRef.get();System.out.println("Updated var1: " + updatedObject.getVar1());System.out.println("Updated var2: " + updatedObject.getVar2());}
    }
    
  • ABA问题:ABA问题指的是,在CAS操作过程中,如果一个变量的值从A变成了B,然后再变回A,那么CAS操作会错误地认为变量的值未改变过。比如,线程1从内存位置V取出A,线程2同时也从内存取出A,并且线程2进行一些操作将值改为B,然后线程2又将V位置数据改成A,这时候线程1进行CAS操作发现内存中的值依然时A,然后线程1操作成功。尽管线程1的CAS操作成功,但是不代表这个过程没有问题。简而言之就是只比较结果,不比较过程。解决ABA问题的常见方法是使用版本号或者标记来跟踪变量的变化。
    public class ABASolutionWithVersion {public static void main(String[] args) {// 初始值为100,初始版本号为0AtomicStampedReference<Integer> atomicRef = new AtomicStampedReference<>(100, 0);int[] stampHolder = new int[1]; // 用于获取当前版本号int expectedValue = 100; // 期望值int newValue = 200; // 新值// 模拟一个线程进行 ABA 操作new Thread(() -> {int stamp = atomicRef.getStamp(); // 获取当前版本号atomicRef.compareAndSet(expectedValue, newValue, stamp, stamp + 1); // 修改值和版本号atomicRef.compareAndSet(newValue, expectedValue, stamp + 1, stamp + 2); // 再次修改回原值和新版本号}).start();// 其他线程进行 CAS 操作new Thread(() -> {int stamp = atomicRef.getStamp(); // 获取当前版本号boolean result = atomicRef.compareAndSet(expectedValue, newValue, stamp, stamp + 1);System.out.println("CAS Result: " + result); // 输出CAS操作结果}).start();}
    }
    
http://www.lryc.cn/news/398635.html

相关文章:

  • 【笔记】虚拟机中的主从数据库连接实体数据库成功后的从数据库不同步问题解决方法2
  • 【每日一练】python类和对象现实举例详细讲解
  • 【学习css1】flex布局-页面footer部分保持在网页底部
  • Java中创建线程的几种方式
  • [A-04] ARMv8/ARMv9-Cache的相关策略
  • 【笔试常见编程题06】最近公共祖先、求最大连续bit数、二进制插入、查找组成一个偶数最接近的两个素数
  • 【工具分享】Gophish——网络钓鱼框架
  • “职业三大底层逻辑“是啥呢?
  • 飞睿智能无线高速uwb安全数据传输模块,低功耗、抗干扰超宽带uwb芯片传输速度技术新突破
  • 手把手教你从微信中取出聊天表情图片,以动态表情保存为gif为例
  • 【深度学习】图形模型基础(5):线性回归模型第三部分:线性回归模型拟合
  • 【Git 入门】初始化配置与新建仓库
  • C语言 求两个整数的最大公约数和最小公倍数
  • Linux arm64平台指令替换函数 aarch64_insn_patch_text_nosync
  • 谷歌浏览器插件开发笔记0.1.033
  • ETag:Springboot接口如何添加Tag
  • JavaSe系列二十七: Java正则表达式
  • (深度估计学习)Depth Anything V2 复现
  • C语言——printf、scanf、其他输入输出函数
  • adb 常用的命令总结
  • Java发展过程中,JVM的演进
  • 笔记:在Entity Framework Core中如何处理多线程操作DbContext
  • RabbitMQ 高级功能
  • 软件架构之开发管理
  • 【Linux 基础】df -h 的输出信息解读
  • 南航秋招指南,线上测评和线下考试
  • 用MATLAB绘制三向应力圆
  • PyTorch 1-深度学习
  • Hi3861鸿蒙开发环境搭建
  • 解决RedisTemplate配置JSON序列化后@Cacheable序列化仍然是JDK序列化的问题