当前位置: 首页 > news >正文

OpenCV和PIL进行前景提取

摘要

在图像处理和分析中,前景提取是一项关键技术,尤其是在计算机视觉和模式识别领域。本文介绍了一种结合OpenCV和PIL库的方法,实现在批量处理图像时有效提取前景并保留原始图像的EXIF数据。具体步骤包括从指定文件夹中读取图像,进行前景提取和处理,然后将结果保存到另一个文件夹,同时保持图像的元数据信息。

在这里插入图片描述

在这里插入图片描述

代码实现步骤

这段代码实现了从指定文件夹中批量读取图像,进行前景提取和处理,并将结果保存到另一个文件夹,同时保留原始图像的EXIF信息。以下是代码的详细解释:

导入必要的库

import cv2
import numpy as np
from PIL import Image
import glob
import os
from pathlib import Path
import tqdm
  • cv2: OpenCV库,用于图像处理。
  • numpy: 数值计算库,用于处理数组操作。
  • PIL: Python图像库,用于处理图像文件和EXIF数据。
  • glob: 文件名模式匹配库,用于查找符合特定模式的文件路径名。
  • os: 操作系统接口,用于文件和目录操作。
  • Path: pathlib库的一部分,用于处理文件路径。
  • tqdm: 进度条库,用于显示处理进度。

设置文件夹路径和创建输出文件夹

folder_path = r'C:\Users\cdh96\Desktop\iphone11\*.jpg'
output_folder = r'D:\lab\paper\img_preproccess\extrat_foreground\1\images'if not os.path.isdir(output_folder):os.mkdir(output_folder)
  • folder_path: 输入图像文件夹路径。
  • output_folder: 输出图像文件夹路径。如果输出文件夹不存在,则创建它。

处理图像

for image_path in tqdm.tqdm(glob.glob(folder_path)):path_obj  = Path(image_path)image_path = path_obj.as_posix()img_original = cv2.imread(image_path)if img_original is None:breakimg_original = cv2.cvtColor(img_original, cv2.COLOR_RGB2BGR)img_gray = cv2.imread(image_path, 0)
  • 使用glob库获取所有符合条件的图像路径,并使用tqdm显示进度条。
  • 使用cv2.imread读取图像,如果图像为空,退出循环。
  • 将图像转换为BGR格式,并读取灰度图像。

前景提取和处理

    output_path = os.path.join(output_folder, path_obj.name)retval, img_global = cv2.threshold(img_gray, 30, 255, cv2.THRESH_BINARY)img_global[img_global > 0] = 1kernel = np.ones((3, 3), dtype=np.uint8)img_global = cv2.morphologyEx(img_global, cv2.MORPH_OPEN, kernel, iterations=4)num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img_global, connectivity=8)sorted_indices = np.argsort(stats[:, -1])labels[labels != sorted_indices[-2]] = 0labels[labels == sorted_indices[-2]] = 1img_original = img_original * np.repeat(labels[:, :, np.newaxis], 3, axis=-1)img_original = cv2.convertScaleAbs(img_original)image_rgb = cv2.cvtColor(img_original, cv2.COLOR_BGR2RGB)
  • 使用全局阈值法提取前景。
  • 使用形态学操作去除噪点。
  • 使用连通组件分析提取主要前景区域。
  • 根据连通组件的面积排序,选取面积第二大的组件作为主要前景。
  • 生成前景掩码并应用到原始图像。

保存处理后的图像并保留EXIF数据

    cv2.imwrite(output_path, image_rgb)with Image.open(r'D:\lab\paper\img_preproccess\extrat_foreground\1\DSC00421.JPG') as img:exif_data = img.info.get('exif')with Image.open(output_path) as img:img.save(output_path, 'JPEG', exif=exif_data)
  • 保存处理后的图像。
  • 从示例图像中提取EXIF数据,并应用到处理后的图像中。

这个过程确保了前景的提取和处理,同时保留了原始图像的EXIF元数据,使得图像在保存时保留原始的拍摄信息。

整体代码


import cv2
import numpy as np
from PIL import Image
import glob
import os
from pathlib import Path
import tqdmfolder_path = r'C:\Users\cdh96\Desktop\iphone11\*.jpg'
output_folder = r'D:\lab\paper\img_preproccess\extrat_foreground\1\images'if not os.path.isdir(output_folder):os.mkdir(output_folder)for image_path in tqdm.tqdm(glob.glob(folder_path)):path_obj  = Path(image_path)image_path = path_obj.as_posix()img_original = cv2.imread(image_path)if img_original is None:breakimg_original = cv2.cvtColor(img_original, cv2.COLOR_RGB2BGR)img_gray = cv2.imread(image_path, 0)output_path = os.path.join(output_folder,path_obj.name)# 分割retval, img_global = cv2.threshold(img_gray, 30, 255, cv2.THRESH_BINARY)img_global[img_global > 0] = 1# 处理毛刺kernel = np.ones((3, 3), dtype=np.uint8)img_global = cv2.morphologyEx(img_global, cv2.MORPH_OPEN, kernel, iterations=4)# 根据面积选取主体num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(img_global, connectivity=8)sorted_indices = np.argsort(stats[:, -1])# 使用masklabels[labels != sorted_indices[-2]] = 0labels[labels == sorted_indices[-2]] = 1img_original = img_original * np.repeat(labels[:, :, np.newaxis], 3, axis=-1)img_original = cv2.convertScaleAbs(img_original)image_rgb = cv2.cvtColor(img_original, cv2.COLOR_BGR2RGB)cv2.imwrite(output_path, image_rgb)# # 存储原始的图像信息with Image.open(r'D:\lab\paper\img_preproccess\extrat_foreground\1\DSC00421.JPG') as img:exif_data = img.info.get('exif')with Image.open(output_path) as img:img.save(output_path, 'JPEG', exif=exif_data)
http://www.lryc.cn/news/397265.html

相关文章:

  • Linux虚拟化大师:使用 KVM 和 QEMU 进行高级虚拟化管理
  • CentOS-6的iso下载地址镜像yum源
  • 【python】PyQt5可视化开发,鼠标键盘实现联动界面交互逻辑与应用实战
  • Raw Socket(一)实现TCP三次握手
  • 考研数学开始的晚?别慌,超全复习规划拿去抄
  • 创建React 项目的几种方式
  • 探索Kotlin:从K1到K2
  • Python爬虫速成之路(1):获取网页源代码
  • OpenGL笔记七之顶点数据绘制命令和绘制模式
  • 力扣题解( 最长湍流子数组)
  • pytorch-RNN存在的问题
  • Leetcode 17:电话号码的字母组合
  • jmeter-beanshell学习4-beanshell截取字符串
  • QScrollArea 设置最大的高度值
  • CentOS6禁止锁屏
  • MapReduce底层原理详解:大案例解析(第32天)
  • 【JVM基础篇】Java垃圾回收器介绍
  • java通过poi-tl导出word实战详细步骤
  • 将自签证书添加到Java的可信任证书列表中
  • 一文清晰了解CSS——简单实例
  • 工程师 - 什么是XML文件
  • [AI 大模型] 阿里巴巴 通义千问
  • 关于无法定位程序输入点 SetDefaultDllDirectories于动态链接库KERNEL32.dll 上 解决方法
  • 轻松创建对象——简单工厂模式(Java实现)
  • Docker Dockerfile:构建与优化
  • 开源项目有哪些机遇与挑战?
  • 利用【Python】【线性规划】优化工厂生产:实现智能资源配置与利润最大化的现代解决方案
  • 【spark】Exception in thread “main“ ExitCodeException exitCode=-1073741701
  • 数学建模美赛经验小结
  • 206. 反转链表 (Swift 版本)