当前位置: 首页 > news >正文

核函数的深入理解

核函数 (Kernel Function)是一种在高维特征空间中隐式计算内积的方法,它允许在原始低维空间中通过一个简单的函数来实现高维空间中的内积计算,而无需显式地计算高维特征向量。

核函数 的基本思想是通过一个映射函数 ϕ \phi ϕ 将原始数据从低维空间映射到高维空间。假设有两个数据点 x x x y y y,在低维空间中的内积是 ⟨ x , y ⟩ \langle x, y \rangle x,y。映射到高维空间后,内积变为 ⟨ ϕ ( x ) , ϕ ( y ) ⟩ \langle \phi(x), \phi(y) \rangle ϕ(x),ϕ(y)⟩。核函数 K K K 定义为:

K ( x , y ) = ⟨ ϕ ( x ) , ϕ ( y ) ⟩ K(x, y) = \langle \phi(x), \phi(y) \rangle K(x,y)=ϕ(x),ϕ(y)⟩

关键在于,核函数 K K K 可以直接计算出高维空间中的内积,而不需要显式地计算 ϕ ( x ) \phi(x) ϕ(x) ϕ ( y ) \phi(y) ϕ(y)。这种方法的优势在于,高维空间中的计算可能非常复杂和耗时,而核函数提供了一种高效的方式来处理这些计算。

常见的核函数包括:

  1. 线性核函数 K ( x , y ) = ⟨ x , y ⟩ K(x, y) = \langle x, y \rangle K(x,y)=x,y
  2. 多项式核函数 K ( x , y ) = ( ⟨ x , y ⟩ + c ) d K(x, y) = (\langle x, y \rangle + c)^d K(x,y)=(⟨x,y+c)d
  3. 高斯径向基函数(RBF)核函数 K ( x , y ) = exp ⁡ ( − ∥ x − y ∥ 2 2 σ 2 ) K(x, y) = \exp\left(-\frac{\|x - y\|^2}{2\sigma^2}\right) K(x,y)=exp(2σ2xy2)
  4. Sigmoid核函数 K ( x , y ) = tanh ⁡ ( α ⟨ x , y ⟩ + c ) K(x, y) = \tanh(\alpha \langle x, y \rangle + c) K(x,y)=tanh(αx,y+c)

通过选择合适的核函数,可以在低维空间中隐式地进行高维空间的内积计算,从而实现非线性分类和回归等任务。


核函数 K ( x , y ) K(x, y) K(x,y) 之所以能够直接给出高维空间中内积的结果,而无需实际计算 ϕ ( x ) \phi(x) ϕ(x) ϕ ( y ) \phi(y) ϕ(y),是因为核函数本身具有特定的数学性质,特别是满足 Mercer 条件。Mercer 条件 确保了核函数可以表示为某个高维特征空间中的内积。

具体来说,核函数 K ( x , y ) K(x, y) K(x,y) 是一个对称函数,满足对于任意有限输入集和任意实值函数 f f f,有:

∬ K ( x , y ) f ( x ) f ( y ) d x d y ≥ 0 \iint K(x, y) f(x) f(y) \, dx \, dy \geq 0 K(x,y)f(x)f(y)dxdy0

这意味着 K ( x , y ) K(x, y) K(x,y) 是一个半正定函数。根据 Mercer 定理,任何满足 Mercer 条件的核函数 K ( x , y ) K(x, y) K(x,y) 都可以表示为某个特征映射 ϕ \phi ϕ 的内积,即:

K ( x , y ) = ⟨ ϕ ( x ) , ϕ ( y ) ⟩ K(x, y) = \langle \phi(x), \phi(y) \rangle K(x,y)=ϕ(x),ϕ(y)⟩

这里的 ϕ \phi ϕ 是将数据从原始空间映射到高维特征空间的函数。关键在于,不需要知道 ϕ \phi ϕ 的具体形式,只需要知道核函数 K ( x , y ) K(x, y) K(x,y) 的定义,就可以直接计算高维空间中的内积。

这种隐式计算的优势在于:

  1. 计算效率:在高维空间中显式计算特征向量 ϕ ( x ) \phi(x) ϕ(x) ϕ ( y ) \phi(y) ϕ(y) 可能非常耗时和复杂,而核函数提供了一种更高效的方式来处理这些计算。
  2. 避免维度灾难:在高维空间中,特征向量的维度可能非常高,甚至无穷大,这会导致计算上的困难。核函数允许在低维空间中进行计算,避免了直接处理高维数据的复杂性。

http://www.lryc.cn/news/395279.html

相关文章:

  • 使用Ckman部署ClickHouse集群介绍
  • 「前端工具」postman接口测试工具详解
  • 生成requirements.txt
  • ubuntu ceph部署
  • 2024.7.8
  • Spring 外部jar包Bean自动装配
  • 2通道音频ADC解码芯片ES7243L、ES7243E、ES7243,用于低成本实现模拟麦克风转换为IIS数字话筒
  • uniapp跨域问题解决
  • [C++][ProtoBuf][Proto3语法][一]详细讲解
  • 千古雄文《渔樵问对》原文、译文、解析
  • uniapp 开发备忘录-防坑指南
  • Simple_ReAct_Agent
  • window wsl安装ubuntu
  • postmessage()在同一域名下,传递消息给另一个页面
  • 初始redis:在Ubuntu上安装redis
  • 生物素结合金纳米粒子(Bt@Au-NPs ) biotin-conjugated Au-NPs
  • LeetCode热题100刷题9:25. K 个一组翻转链表、101. 对称二叉树、543. 二叉树的直径、102. 二叉树的层序遍历
  • PyJWT,一个基于JSON的轻量级安全通信方式的python库
  • Golang | Leetcode Golang题解之第223题矩形面积
  • 新手怎么使用GitLab?
  • 表情包原理
  • 技术难点思考SpringBoot如何集成Jmeter开发
  • 如何快速使用C语言操作sqlite3
  • 网络模型介绍
  • Codeforces Round #956 (Div. 2) and ByteRace 2024
  • 域名、网页、HTTP概述
  • Redisson分布式锁、可重入锁
  • 适合宠物饮水机的光电传感器有哪些
  • 『Python学习笔记』Python运行设置PYTHONPATH环境变量!
  • 2024年06月CCF-GESP编程能力等级认证Python编程三级真题解析