当前位置: 首页 > news >正文

Simple_ReAct_Agent

参考自https://www.deeplearning.ai/short-courses/ai-agents-in-langgraph,以下为代码的实现。

Basic ReAct Agent(manual action)

import openai
import re
import httpx
import os
from dotenv import load_dotenv, find_dotenvOPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
from openai import OpenAI
client = OpenAI(api_key=OPENAI_API_KEY,base_url="https://api.chatanywhere.tech/v1"
)
chat_completion = client.chat.completions.create(model="gpt-3.5-turbo",messages=[{"role": "user", "content": "Hello world"}]
)
chat_completion.choices[0].message.content
'Hello! How can I assist you today?'
prompt = """
You run in a loop of Thought, Action, PAUSE, Observation.
At the end of the loop you output an Answer
Use Thought to describe your thoughts about the question you have been asked.
Use Action to run one of the actions available to you - then return PAUSE.
Observation will be the result of running those actions.Your available actions are:calculate:
e.g. calculate: 4 * 7 / 3
Runs a calculation and returns the number - uses Python so be sure to use floating point syntax if necessaryaverage_dog_weight:
e.g. average_dog_weight: Collie
returns average weight of a dog when given the breedExample session:Question: How much does a Bulldog weigh?
Thought: I should look the dogs weight using average_dog_weight
Action: average_dog_weight: Bulldog
PAUSEYou will be called again with this:Observation: A Bulldog weights 51 lbsYou then output:Answer: A bulldog weights 51 lbs
""".strip()
class Agent:def __init__(self, system=""):self.system = systemself.messages = []if self.system:self.messages.append({"role": "system", "content": system})def __call__(self, message):self.messages.append({"role": "user", "content": message})result = self.execute()self.messages.append({"role": "assistant", "content": result})return resultdef execute(self):completion = client.chat.completions.create(model="gpt-3.5-turbo",temperature=0,messages=self.messages)return completion.choices[0].message.content
def calculate(what):return eval(what)def average_dog_weight(name):if name in "Scottish Terrier":return("Scottish Terriers average 20 lbs")elif name in "Border Collie":return("a Border Collies weight is 37 lbs")elif name in "Toy Poodle":return("a toy poodles average weight is 7 lbs")else:return("An average dog weights 50 lbs")known_actions = {"calculate": calculate,"average_dog_weight": average_dog_weight
}
abot = Agent(prompt)
result = abot("How much does a toy poodle weigh?")
print(result)
Thought: I should look up the average weight of a Toy Poodle using the average_dog_weight action.
Action: average_dog_weight: Toy Poodle
PAUSE
result = average_dog_weight("Toy Poodle")
result
'a toy poodles average weight is 7 lbs'
next_prompt = "Observation: {}".format(result)
abot(next_prompt)
'Answer: A Toy Poodle weighs 7 lbs'
abot.messages
[{'role': 'system','content': 'You run in a loop of Thought, Action, PAUSE, Observation.\nAt the end of the loop you output an Answer\nUse Thought to describe your thoughts about the question you have been asked.\nUse Action to run one of the actions available to you - then return PAUSE.\nObservation will be the result of running those actions.\n\nYour available actions are:\n\ncalculate:\ne.g. calculate: 4 * 7 / 3\nRuns a calculation and returns the number - uses Python so be sure to use floating point syntax if necessary\n\naverage_dog_weight:\ne.g. average_dog_weight: Collie\nreturns average weight of a dog when given the breed\n\nExample session:\n\nQuestion: How much does a Bulldog weigh?\nThought: I should look the dogs weight using average_dog_weight\nAction: average_dog_weight: Bulldog\nPAUSE\n\nYou will be called again with this:\n\nObservation: A Bulldog weights 51 lbs\n\nYou then output:\n\nAnswer: A bulldog weights 51 lbs'},{'role': 'user', 'content': 'How much does a toy poodle weigh?'},{'role': 'assistant','content': 'Thought: I should look up the average weight of a Toy Poodle using the average_dog_weight action.\nAction: average_dog_weight: Toy Poodle\nPAUSE'},{'role': 'user','content': 'Observation: a toy poodles average weight is 7 lbs'},{'role': 'assistant', 'content': 'Answer: A Toy Poodle weighs 7 lbs'}]

A little more complex question

abot = Agent(prompt)
question = """I have 2 dogs, a border collie and a scottish terrier. \
What is their combined weight"""
abot(question)
'Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.\n\nAction: average_dog_weight: Border Collie\nPAUSE'
print(abot.messages[-1]['content'])
Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.Action: average_dog_weight: Border Collie
PAUSE
next_prompt = "Observation: {}".format(average_dog_weight("Border Collie"))
print(next_prompt)
Observation: a Border Collies weight is 37 lbs
abot(next_prompt)
'Action: average_dog_weight: Scottish Terrier\nPAUSE'
next_prompt = "Observation: {}".format(average_dog_weight("Scottish Terrier"))
print(next_prompt)
Observation: Scottish Terriers average 20 lbs
abot(next_prompt)
'Action: calculate: 37 + 20\nPAUSE'
next_prompt = "Observation: {}".format(eval("37 + 20"))
print(next_prompt)
Observation: 57
abot(next_prompt)
'Answer: The combined weight of a Border Collie and a Scottish Terrier is 57 lbs'

Add loop

action_re = re.compile(r'^Action: (\w+): (.*)$')
def query(question, max_turns=5):i = 0bot = Agent(prompt)next_prompt = questionwhile i < max_turns:i += 1result = bot(next_prompt)print(result)actions = [action_re.match(a) for a in result.split('\n') if action_re.match(a)] if actions:# There is an action to runaction, action_input = actions[0].groups()if action not in known_actions:raise Exception("Unknown action: {}: {}".format(action, action_input))print(" -- running {} {}".format(action, action_input))observation = known_actions[action](action_input)print("Observation:", observation)next_prompt = "Observation: {}".format(observation)else:return
question = """I have 2 dogs, a border collie and a scottish terrier. \
What is their combined weight"""
query(question)
Thought: I can find the average weight of a Border Collie and a Scottish Terrier using the average_dog_weight action, then calculate their combined weight.Action: average_dog_weight: Border Collie
PAUSE-- running average_dog_weight Border Collie
Observation: a Border Collies weight is 37 lbs
Action: average_dog_weight: Scottish Terrier
PAUSE-- running average_dog_weight Scottish Terrier
Observation: Scottish Terriers average 20 lbs
Action: calculate: 37 + 20
PAUSE-- running calculate 37 + 20
Observation: 57
Answer: The combined weight of a Border Collie and a Scottish Terrier is 57 lbs
http://www.lryc.cn/news/395266.html

相关文章:

  • window wsl安装ubuntu
  • postmessage()在同一域名下,传递消息给另一个页面
  • 初始redis:在Ubuntu上安装redis
  • 生物素结合金纳米粒子(Bt@Au-NPs ) biotin-conjugated Au-NPs
  • LeetCode热题100刷题9:25. K 个一组翻转链表、101. 对称二叉树、543. 二叉树的直径、102. 二叉树的层序遍历
  • PyJWT,一个基于JSON的轻量级安全通信方式的python库
  • Golang | Leetcode Golang题解之第223题矩形面积
  • 新手怎么使用GitLab?
  • 表情包原理
  • 技术难点思考SpringBoot如何集成Jmeter开发
  • 如何快速使用C语言操作sqlite3
  • 网络模型介绍
  • Codeforces Round #956 (Div. 2) and ByteRace 2024
  • 域名、网页、HTTP概述
  • Redisson分布式锁、可重入锁
  • 适合宠物饮水机的光电传感器有哪些
  • 『Python学习笔记』Python运行设置PYTHONPATH环境变量!
  • 2024年06月CCF-GESP编程能力等级认证Python编程三级真题解析
  • 代码随想录算法训练营:20/60
  • Apache Seata应用侧启动过程剖析——RM TM如何与TC建立连接
  • Origin 的使用
  • MySQL相关知识点
  • 第4章 Vite模块化与插件系统(二)
  • 前端传到后端的data数组中有些属性值为空
  • 怎么批量下载网页里的图片和视频 如何批量下载一个网站的所有图片 如何批量下载网页视频文件 idm软件怎么下载
  • Python面试题:在 Python 中,如何处理文件操作?
  • 红日靶机1
  • Windows电脑PC使用adb有线跟无线安装apk包
  • 如何把harmonos项目修改为openharmony项目
  • 【QT】Qt智能指针QPointer、QSharedPointer、QWeakPointer、QScopedPointer