当前位置: 首页 > news >正文

树状数组

树状数组

树状数组的核心思想:分治。将数组以二叉树的形式进行维护区间之和。

a a a为原数组, t r e e tree tree为树状数组。 t r e e tree tree数组用于存储树上该结点下严格直连的子节点之和(例: t [ 1 ] = a [ 1 ] , t [ 2 ] = t [ 1 ] + a [ 2 ] , t [ 3 ] = a [ 3 ] , t [ 4 ] = t [ 2 ] + t [ 3 ] + a [ 4 ] t[1]=a[1],t[2]=t[1]+a[2],t[3]=a[3],t[4]=t[2]+t[3]+a[4] t[1]=a[1],t[2]=t[1]+a[2],t[3]=a[3],t[4]=t[2]+t[3]+a[4] t [ 5 ] = a [ 5 ] , t [ 6 ] = t [ 5 ] + a [ 6 ] , t [ 7 ] = a [ 7 ] , t [ 8 ] = t [ 4 ] + t [ 6 ] + t [ 7 ] + a [ 8 ] , t[5]=a[5],t[6]=t[5]+a[6],t[7]=a[7],t[8]=t[4]+t[6]+t[7]+a[8], t[5]=a[5],t[6]=t[5]+a[6],t[7]=a[7],t[8]=t[4]+t[6]+t[7]+a[8],…),即存储 [ x − l o w b i t ( x ) + 1 , x ] [x-lowbit(x)+1,x] [xlowbit(x)+1,x]区间之和

树状数组的操作:向下查询 向上修改

向下查询:查询前一个能代表其和的元素(例: s u m ( 4 ) = t [ 4 ] , s u m ( 3 ) = t [ 3 ] + t [ 2 ] , s u m ( 2 ) = t [ 2 ] , … sum(4)=t[4],sum(3)=t[3]+t[2],sum(2)=t[2],… sum(4)=t[4],sum(3)=t[3]+t[2],sum(2)=t[2],),可发现与下标的二进制表示有关,每次下标更新都在去掉二进制位中的最低的1,这一操作可用 i n d e x − = l o w b i t index-=lowbit index=lowbit实现。

向上修改:向后更新到其所有的代表结点(例:修改 a [ 3 ] a[3] a[3],需要修改 t [ 3 ] 、 t [ 4 ] 、 t [ 8 ] t[3]、t[4]、t[8] t[3]t[4]t[8]),可以发现每次更新是在下标二进制中最后一个1上+1,因此可通过 i n d e x + = l o w b i t index+=lowbit index+=lowbit实现。

注意:0没有 l o w b i t lowbit lowbit,因此树状数组下标必须从1开始。

树状数组

lowbit函数的实现

int lowbit(int i){return i&(-i);
}

修改函数的实现(向上修改)

void update(int i,int num){//向上修改for(;i<=N;i+=lowbit(i))tree[i]+=num;
}

查询函数的实现(向下查询)

int query(int i){//向下查询int ans=0;for(;i>=1;i-=lowbit(i))//注意tree数组下标从1开始ans+=tree[i];return ans;
}

单点修改 区间查询(前缀和版树状数组)

  • 初始化
void init(){//初始化tree数组for(int i=1;i<=n;i++)//注意tree数组下标从1开始update(i,a[i]);//在初始化tree数组时num所传入参数为原数组值 
}
  • 单点修改(以将 x x x n u m num num为例)
extern int x,num;
update(x,num);
  • 区间查询(以查询 [ l , r ] [l,r] [l,r]为例)
extern int l,r;
query(r)-query(l-1);

区间修改 单点查询(差分版树状数组)

  • 初始化
void init(){for(int i=1;i<=n;i++)update(i,a[i]-a[i-1]);//num传入差分数组
}
  • 区间修改(以 [ l , r ] [l,r] [l,r]均加 n u m num num为例)
extern int l,r,num;
update(l,num),update(r+1,-num);
  • 单点查询(以查询 x x x为例)
extern int x;
query(x);

区间修改+区间查询(二阶树状数组)

(注:此类问题也可采用线段树求解。)

a 1 + a 2 + . . . + a n = d 1 + ( d 1 + d 2 ) + . . . + ( d 1 + . . . + d n ) = n × d 1 + ( n − 1 ) × d 2 + . . . + d n a_1+a_2+...+a_n=d_1+(d_1+d_2)+...+(d_1+...+d_n)=n\times d_1+(n-1)\times d_2+...+d_n a1+a2+...+an=d1+(d1+d2)+...+(d1+...+dn)=n×d1+(n1)×d2+...+dn

= n ∑ i = 1 n d i − ∑ i = 1 n ( i − 1 ) d i =n\sum\limits_{i=1}^{n} d_i-\sum\limits_{i=1}^{n}(i-1)d_i =ni=1ndii=1n(i1)di(核心公式)

因此,维护两个树状数组,一个用于实现 d i d_i di,另一个实现 ( i − 1 ) d i (i-1)d_i (i1)di

  • 查询函数、修改函数变更为:
void update1(int i,int num){for(;i<=n;i+=lowbit(i))t1[i]+=num;
}
void update2(int i,int num){for(;i<=n;i+=lowbit(i))t2[i]+=num;
}
int query1(int i){int ans=0;for(;i>=1;i-=lowbit(i))ans+=t1[i];return ans;
}
int query2(int i){int ans=0;for(;i>=1;i-=lowbit(i))ans+=t2[i];return ans;
}
  • 初始化函数(按照推导公式)
void init(){for(int i=1;i<=n;i++){update1(i,a[i]-a[i-1]);//对tree1传入差分数组update2(i,(i-1)*(a[i]-a[i-1]));//对tree2传入(i-1)*差分数组}
}
  • 区间修改(以 [ l , r ] [l,r] [l,r]均加 n u m num num为例)
extern int l,r,num;
update1(l,num),update1(r+1,-num);//对tree1加上差值
update2(l,(l-1)*num),update2(r+1,(r+1-1)*(-num));//对tree2加上差值(根据推导公式)
  • 区间查询(以查询 [ l , r ] [l,r] [l,r]为例)(本质:在求前缀和)
extern int l,r;
(r*query1(r)-query2(r))-((l-1)*query1(l-1)-query2(l-1));

应用

求区间之和

以上已给出。

求区间最值

求逆序数

http://www.lryc.cn/news/395220.html

相关文章:

  • 【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第一篇 嵌入式Linux入门篇-
  • ansible常见问题配置好了密码还是报错
  • python-课程满意度计算(赛氪OJ)
  • 6、Redis系统-数据结构-05-整数
  • STM32学习历程(day5)
  • 格蠹汇编阅读理解
  • 深入探索:scikit-learn中递归特征消除(RFE)的奥秘
  • 240708_昇思学习打卡-Day20-MindNLP ChatGLM-6B StreamChat
  • lua入门(2) - 数据类型
  • dify/api/models/provider.py文件中的数据表
  • 从入门到精通:网络基础详解
  • 初步理解三__《面向互联网大数据的威胁情报 并行挖掘技术研究》
  • 【C++修行之道】string类的使用
  • 云原生监控-Kubernetes-Promethues-Grafana
  • MySQL高级----InnoDB引擎
  • Docker定时清理
  • mysql之导入测试数据
  • WPScan漏洞扫描工具的介绍及使用
  • 基于单片机的饲料搅拌机控制系统设计
  • Mysql笔记-v2
  • Java SpringBoot MongoPlus 使用MyBatisPlus的方式,优雅的操作MongoDB
  • 【易捷海购-注册安全分析报告】
  • antd+vue——实现table组件跨页多选,已选择数据禁止第二次重复选择
  • Python采集京东标题,店铺,销量,价格,SKU,评论,图片
  • 数据中台指标管理系统
  • 什么是ThreadLocal以及内存泄漏问题、hash冲突问题
  • 从零开始做题:My_lllp
  • 如何编译ffmpeg支持h265(hevc)?
  • UNIAPP_顶部导航栏右侧添加uni-icons图标,并绑定点击事件,自定义导航栏右侧图标
  • Redis原理-数据结构