当前位置: 首页 > news >正文

揭秘数据之美:【Seaborn】在现代【数学建模】中的革命性应用

目录

已知数据集 tips

生成数据集并保存为CSV文件 

数据预览:

导入和预览数据

步骤1:绘制散点图(Scatter Plot)

步骤2:添加回归线(Regression Analysis)

步骤3:分类变量分析(Categorical Variables)

步骤4:箱线图(Box Plot)

步骤5:小提琴图(Violin Plot)

步骤6:绘制热力图(Heatmap)

 ​编辑

总结

1. 生成数据集并保存为CSV文件

2. 导入和预览数据

3. 绘制散点图(Scatter Plot)

4. 添加回归线(Regression Analysis)

5. 分类变量分析(Categorical Variables)

6. 绘制箱线图(Box Plot)

7. 绘制小提琴图(Violin Plot)

8. 绘制热力图(Heatmap)


 

ce6fbd68767d465bbe94b775b8b811db.png

731bd47804784fa2897220a90a387b28.gif

 

专栏:数学建模学习笔记

python相关库的安装:pandas,numpy,matplotlib,statsmodels

总篇:【数学建模】—【新手小白到国奖选手】—【学习路线】

第一卷:Numpy

第二卷:Pandas

第三卷:Matplotlib

在数据科学和数学建模的过程中,数据可视化是非常重要的一环。通过可视化,我们能够更直观地理解数据的分布和关系,从而为后续的分析和建模打下坚实的基础。本篇文章将围绕一个具体的实例,详细讲解如何使用Seaborn库进行数据可视化。我们将使用Seaborn内置的数据集tips,该数据集包含了一些餐馆的小费数据。我们的目标是通过数据可视化,探索影响小费金额的因素,并尝试建立一个数学模型。

已知数据集 tips

tips 数据集包含以下几个主要字段:

  • total_bill: 总账单金额
  • tip: 小费金额
  • sex: 性别
  • smoker: 是否吸烟
  • day: 就餐日期
  • time: 就餐时间(午餐或晚餐)
  • size: 就餐人数

生成数据集并保存为CSV文件 

import pandas as pd
import numpy as np# 设置随机种子
np.random.seed(0)# 生成数据
n = 1000
total_bill = np.round(np.random.uniform(5, 50, n), 2)
tip = np.round(total_bill * np.random.uniform(0.1, 0.3, n), 2)
sex = np.random.choice(['Male', 'Female'], n)
smoker = np.random.choice(['Yes', 'No'], n)
day = np.random.choice(['Thur', 'Fri', 'Sat', 'Sun'], n)
time = np.random.choice(['Lunch', 'Dinner'], n)
size = np.random.randint(1, 6, n)# 创建DataFrame
tips = pd.DataFrame({'total_bill': total_bill,'tip': tip,'sex': sex,'smoker': smoker,'day': day,'time': time,'size': size
})# 保存数据集到CSV文件
tips.to_csv('tips.csv', index=False)# 显示数据集的前几行
print(tips.head())

数据预览

total_billtipsexsmokerdaytimesize
29.706.49FemaleNoFriLunch5
37.183.79FemaleYesThurLunch2
32.126.27FemaleNoThurLunch4
29.527.14FemaleNoFriLunch5
24.062.62FemaleYesSunDinner5

导入和预览数据

在生成数据后,我们导入必要的可视化库,并预览数据。

import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd# 读取本地示例数据集
tips = pd.read_csv('tips.csv')# 显示数据集的前几行
print(tips.head())

详解:

  1. 导入必要的库

    • seaborn: 用于数据可视化的主要库。
    • matplotlib.pyplot: Seaborn是基于Matplotlib构建的,所以我们需要同时导入Matplotlib来进行图表的展示。
  2. 读取数据

    • 使用pandas.read_csv函数从CSV文件中读取数据。
  3. 预览数据

    • 使用print(tips.head())函数来显示数据集的前几行,帮助我们快速了解数据的结构和内容。

步骤1:绘制散点图(Scatter Plot)

我们首先绘制一个散点图,展示总账单(total_bill)与小费(tip)之间的关系。

# 绘制散点图
sns.scatterplot(data=tips, x='total_bill', y='tip')
plt.title('Scatter plot of Total Bill vs Tip')
plt.xlabel('Total Bill')
plt.ylabel('Tip')
plt.show()

 

  1. 绘制散点图

    • 使用seaborn.scatterplot函数,其中data参数指定数据集,xy参数分别指定横轴和纵轴的数据字段。
  2. 设置图表标题和标签

    • 使用plt.title设置图表标题。
    • 使用plt.xlabelplt.ylabel分别设置横轴和纵轴的标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

散点图是一种常用的图表类型,用于展示两个变量之间的关系。在这个例子中,使用seaborn.scatterplot函数绘制总账单(total_bill)与小费(tip)之间的散点图。通过散点图,可以直观地看到总账单和小费之间的关系。从图中可以看出,小费随总账单的增加而增加,但这种关系是否是线性的还需要进一步分析。

步骤2:添加回归线(Regression Analysis)

为了更好地了解总账单和小费之间的关系,我们可以使用Seaborn的 lmplot 函数来添加一条回归线。

# 绘制带回归线的散点图
sns.lmplot(data=tips, x='total_bill', y='tip')
plt.title('Total Bill vs Tip with Regression Line')
plt.xlabel('Total Bill')
plt.ylabel('Tip')
plt.show()

 

  1. 绘制带回归线的散点图

    • 使用seaborn.lmplot函数,其中data参数指定数据集,xy参数分别指定横轴和纵轴的数据字段。
    • lmplot函数不仅绘制散点图,还会自动添加一条回归线,用于展示两个变量之间的线性关系。
  2. 设置图表标题和标签

    • 同样使用plt.titleplt.xlabelplt.ylabel设置图表的标题和轴标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

回归分析是一种统计方法,用于研究两个变量之间的关系。在这个例子中,使用Seaborn的lmplot函数来绘制带有回归线的散点图。通过添加回归线,可以更清楚地看到总账单和小费之间的线性关系。这条回归线表示小费随总账单增加的趋势,图中还会显示回归线的置信区间。

步骤3:分类变量分析(Categorical Variables)

接下来,我们分析性别、吸烟情况等分类变量对小费的影响。

# 使用hue参数根据性别绘制不同颜色的散点图
sns.scatterplot(data=tips, x='total_bill', y='tip', hue='sex')
plt.title('Total Bill vs Tip by Gender')
plt.xlabel('Total Bill')
plt.ylabel('Tip')
plt.show()

 

  1. 根据分类变量绘制散点图

    • 使用seaborn.scatterplot函数,通过hue参数指定分类变量(例如性别),从而根据不同类别绘制不同颜色的点。
  2. 设置图表标题和标签

    • 使用plt.titleplt.xlabelplt.ylabel设置图表的标题和轴标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

分类变量(如性别、吸烟情况等)在数据分析中非常重要,因为它们能够提供关于数据分布的更多信息。在这个例子中,使用seaborn.scatterplot函数,根据性别绘制不同颜色的散点图。通过这种方式,可以看到性别对总账单和小费关系的影响。例如,可以观察到男性和女性在小费上的差异。

步骤4:箱线图(Box Plot)

箱线图可以帮助我们了解数据的分布及其异常值。

# 绘制箱线图展示不同日期的总账单分布
sns.boxplot(data=tips, x='day', y='total_bill')
plt.title('Box plot of Total Bill by Day')
plt.xlabel('Day')
plt.ylabel('Total Bill')
plt.show()

 

  1. 绘制箱线图

    • 使用seaborn.boxplot函数,其中data参数指定数据集,xy参数分别指定分类变量和连续变量。
    • 箱线图可以展示数据的中位数、四分位数及其异常值。
  2. 设置图表标题和标签

    • 使用plt.titleplt.xlabelplt.ylabel设置图表的标题和轴标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

箱线图是一种统计图表,用于展示数据分布的五个统计量:最小值、第一四分位数、中位数、第三四分位数和最大值。箱线图还可以展示异常值。在这个例子中,使用seaborn.boxplot函数绘制不同日期(day)的总账单(total_bill)分布。通过箱线图,可以看到不同日期的总账单分布情况,并识别出哪些数据点是异常值。例如,可以观察到在某些日期,总账单的分布范围较广,而在另一些日期,分布范围较窄。

步骤5:小提琴图(Violin Plot)

小提琴图结合了箱线图和核密度图,可以提供关于数据分布的更多信息。

# 绘制小提琴图展示不同日期的小费分布
sns.violinplot(data=tips, x='day', y='tip')
plt.title('Violin plot of Tip by Day')
plt.xlabel('Day')
plt.ylabel('Tip')
plt.show()

  1. 绘制小提琴图

    • 使用seaborn.violinplot函数,其中data参数指定数据集,xy参数分别指定分类变量和连续变量。
    • 小提琴图展示了数据分布的核密度估计,并结合了箱线图的元素。
  2. 设置图表标题和标签

    • 使用plt.titleplt.xlabelplt.ylabel设置图表的标题和轴标签。
  3. 显示图表

    • 使用plt.show()函数来显示图表。

小提琴图结合了箱线图和核密度图的优点,可以更详细地展示数据分布的特征。在这个例子中,使用seaborn.violinplot函数绘制不同日期(day)的小费(tip)分布。通过小提琴图,可以看到不同日期的小费分布情况,并识别出数据分布的密度和异常值。例如,可以观察到在某些日期,小费的分布较为集中,而在另一些日期,分布较为分散。

步骤6:绘制热力图(Heatmap)

热力图适合展示矩阵数据,比如相关矩阵。例如,绘制数据集的相关矩阵:

# 选择数值列
numeric_tips = tips.select_dtypes(include='number')# 计算相关矩阵并绘制热力图
corr = numeric_tips.corr()
plt.figure(figsize=(10, 8))
sns.heatmap(corr, annot=True, cmap='coolwarm', linewidths=0.5)
plt.title('Heatmap of Correlation Matrix')
plt.show()

  1. 计算相关矩阵

    • 使用DataFrame.corr()函数计算数据集中数值变量之间的相关系数。
  2. 绘制热力图

    • 使用seaborn.heatmap函数绘制热力图。
    • corr:相关矩阵,作为热力图的数据输入。
    • annot=True:在每个单元格中显示相关系数的数值。
    • cmap='coolwarm':设置热力图的颜色映射,coolwarm颜色映射使得正相关和负相关的数据点能够通过颜色区分开来。
    • linewidths=0.5:设置每个单元格之间的间隔线宽度。
  3. 设置图表大小:使用plt.figure(figsize=(10, 8))设置图表的大小,确保图表清晰可读。

  4. 设置图表标题:使用plt.title设置图表的标题。

  5. 显示图表:使用plt.show()函数来显示热力图。

相关矩阵热力图解释:

  • 对角线:热力图的对角线上的值都是1,因为每个变量与自身的相关系数都是1。
  • 变量之间的相关性:热力图的非对角线单元格显示了不同变量之间的相关系数。颜色的深浅表示相关性强弱,颜色的方向(冷暖)表示正相关或负相关。

通过这些详细的步骤,我们能够全面地分析和可视化餐馆小费数据,深入了解影响小费的各种因素,为进一步的数学建模和决策提供有力的支持。

 

总结

1. 生成数据集并保存为CSV文件

首先,我们生成了一个包含餐馆小费信息的模拟数据集,并将其保存为CSV文件。数据集包含以下字段:total_billtipsexsmokerdaytimesize

2. 导入和预览数据

使用Pandas库读取本地CSV文件,并预览数据集的前几行,以了解数据的结构和内容。

3. 绘制散点图(Scatter Plot)

使用Seaborn的scatterplot函数绘制散点图,展示总账单(total_bill)与小费(tip)之间的关系。

4. 添加回归线(Regression Analysis)

使用Seaborn的lmplot函数在散点图上添加回归线,以更清晰地展示总账单和小费之间的线性关系。

5. 分类变量分析(Categorical Variables)

使用scatterplot函数的hue参数,根据性别绘制不同颜色的散点图,分析性别对总账单和小费关系的影响。

6. 绘制箱线图(Box Plot)

使用Seaborn的boxplot函数绘制箱线图,展示不同日期的总账单分布,帮助识别数据的中位数、四分位数及其异常值。

7. 绘制小提琴图(Violin Plot)

使用Seaborn的violinplot函数绘制小提琴图,结合箱线图和核密度图,提供更多关于数据分布的信息。

8. 绘制热力图(Heatmap)

计算数据集中数值变量之间的相关矩阵,使用Seaborn的heatmap函数绘制热力图,直观地展示各变量之间的相关性。

通过这些步骤,可以全面地分析和可视化餐馆小费数据,深入了解影响小费的各种因素,为进一步的数学建模和决策提供有力的支持。

http://www.lryc.cn/news/392444.html

相关文章:

  • 【宠粉赠书】UML 2.5基础、建模与设计实践
  • Python中几个重要的集合
  • 【JS】纯web端使用ffmpeg实现的视频编辑器-视频合并
  • 解决Python用xpath爬取不到数据的一个思路
  • C#面:如何把一个array复制到arrayist里
  • 解决前后端同一个端口跨域问题
  • 《C语言》认识数据类型和理解变量
  • 【ARM 常见汇编指令学习 7.1 -- LDRH 半字读取指令】
  • C++期末整理
  • 技术派Spring事件监听机制及原理
  • 秋招突击——设计模式补充——简单工厂模式和策略模式
  • SwiftUI中List的liststyle样式及使用详解添加、移动、删除、自定义滑动
  • PostgreSQL的系统视图pg_stats
  • UML2.0-系统架构师(二十四)
  • leetcode 152. 乘积最大子数组「贪心」「动态规划」
  • Android项目目录结构
  • 网络安全--计算机网络安全概述
  • 用requirements.txt配置环境
  • APP渗透-android12夜神模拟器+Burpsuite实现
  • 源码扭蛋机开发初探
  • Patch SCN使用说明---惜分飞
  • 【微服务架构的守护神】Eureka与服务熔断深度解析
  • 使用label-studio对OCR数据进行预标注
  • 嵌入式linux sqlite3读写demo
  • vue实现搜索文章关键字,滑到指定位置并且高亮
  • Stable Diffusion与AI艺术:探索人工智能的创造力
  • 华为HCIP Datacom H12-821 卷26
  • golang 获取系统的主机 CPU 内存 磁盘等信息
  • Infinitar链游新发展新机遇
  • Figma 被爆出它剽窃了苹果的设计后撤下了AI工具Make Designs