sin x和cos x的导数
我们都知道(sinx)′=cosx(\sin x)'=\cos x(sinx)′=cosx,(cosx)′=−sinx(\cos x)'=-\sin x(cosx)′=−sinx,但是为什么呢?
sinx\sin xsinx的导数
(sinx)′=limΔx→0sin(x+Δx)−sinxΔx(\sin x)'=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin(x+\Delta x)-\sin x}{\Delta x}(sinx)′=Δx→0limΔxsin(x+Δx)−sinx
根据三角函数公式中的和差公式可得
原式=limΔx→0sinxcosΔx+sinΔxcosx−sinxΔx=limΔx→0sinx(cosΔx−1)Δx+limΔx→0sinΔxcosxΔx=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin x\cos\Delta x+\sin \Delta x\cos x-\sin x}{\Delta x}=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin x(\cos\Delta x-1)}{\Delta x}+\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin \Delta x\cos x}{\Delta x}=Δx→0limΔxsinxcosΔx+sinΔxcosx−sinx=Δx→0limΔxsinx(cosΔx−1)+Δx→0limΔxsinΔxcosx
由无穷小替换可得,当x→0x\rightarrow 0x→0时,1−cosx∼12x21-\cos x\sim\dfrac12 x^21−cosx∼21x2,sinx∼x\sin x\sim xsinx∼x
所以原式=−limΔx→0sinx×12Δx+limΔx→0cosx=−0+cosx=cosx=-\lim\limits_{\Delta x\rightarrow 0}\sin x\times \dfrac 12\Delta x+\lim\limits_{\Delta x\rightarrow 0}\cos x=-0+\cos x=\cos x=−Δx→0limsinx×21Δx+Δx→0limcosx=−0+cosx=cosx
cosx\cos xcosx的导数
与sinx\sin xsinx的导数类似,证明如下。
cosx=limΔx→0cos(x+Δx)−cosxΔx\cos x=\lim\limits_{\Delta x\rightarrow 0}\dfrac{\cos(x+\Delta x)-\cos x}{\Delta x}cosx=Δx→0limΔxcos(x+Δx)−cosx
=limΔx→0cosxcosΔx−sinxsinΔx−cosxΔx\quad\quad \ =\lim\limits_{\Delta x\rightarrow 0}\dfrac{\cos x\cos \Delta x-\sin x\sin \Delta x-\cos x}{\Delta x} =Δx→0limΔxcosxcosΔx−sinxsinΔx−cosx
=limΔx→0cosx(cosΔx−1)Δx−limΔx→0sinxsinΔxΔx\quad\quad \ =\lim\limits_{\Delta x\rightarrow 0}\dfrac{\cos x(\cos \Delta x-1)}{\Delta x}-\lim\limits_{\Delta x\rightarrow 0}\dfrac{\sin x\sin \Delta x}{\Delta x} =Δx→0limΔxcosx(cosΔx−1)−Δx→0limΔxsinxsinΔx
=−limΔx→012cosxΔx−limΔx→0sinx\quad\quad \ =-\lim\limits_{\Delta x\rightarrow 0}\dfrac 12\cos x\Delta x-\lim\limits_{\Delta x\rightarrow 0}\sin x =−Δx→0lim21cosxΔx−Δx→0limsinx
=−0−sinx\quad\quad \ =-0-\sin x =−0−sinx
=−sinx\quad\quad \ =-\sin x =−sinx
所以(cosx)′=sinx(\cos x)'=\sin x(cosx)′=sinx