当前位置: 首页 > news >正文

鱼眼相机 去畸变

目录

枕形畸变和去枕形畸变

去枕形畸变失败


枕形畸变和去枕形畸变

import cv2
import numpy as np
import matplotlib.pyplot as plt# 创建一个带网格的原始图像
def create_grid(image_size=512, grid_size=20):image = np.zeros((image_size, image_size, 3), dtype=np.uint8)for i in range(0, image_size, grid_size):cv2.line(image, (i, 0), (i, image_size), (255, 255, 255), 1)cv2.line(image, (0, i), (image_size, i), (255, 255, 255), 1)return image# 应用枕形畸变
def apply_pincushion_distortion(image, k1=0.05):image_size = image.shape[0]fx, fy = image_size * 1.0, image_size * 1.0cx, cy = image_size / 2, image_size / 2camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])dist_coeffs = np.array([k1, 0, 0, 0, 0])  # 正值增加枕形畸变h, w = image.shape[:2]new_camera_matrix, roi = cv2.getOptimalNewCameraMatrix(camera_matrix, dist_coeffs, (w, h), 1)distorted_image = cv2.undistort(image, camera_matrix, dist_coeffs, None, new_camera_matrix)return distorted_image# 去除枕形畸变
def remove_pincushion_distortion(image, k1=0.0005):image_size = image.shape[0]fx, fy = image_size * 1.0, image_size * 1.0cx, cy = image_size / 2, image_size / 2camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])dist_coeffs = np.array([-k1, 0, 0, 0, 0])  # 负值去除枕形畸变h, w = image.shape[:2]new_camera_matrix, roi = cv2.getOptimalNewCameraMatrix(camera_matrix, dist_coeffs, (w, h), 1)undistorted_image = cv2.undistort(image, camera_matrix, dist_coeffs, None, new_camera_matrix)return undistorted_image# 主函数
if __name__ == "__main__":original_grid = create_grid()distorted_grid = apply_pincushion_distortion(original_grid,k1=-0.2)undistorted_grid = remove_pincushion_distortion(distorted_grid,k1=-0.2-0.2)# 使用 OpenCV 展示图像cv2.imshow('Original Image', original_grid)cv2.imshow('Pincushion Distorted Image', distorted_grid)cv2.imshow('Undistorted Image', undistorted_grid)cv2.waitKey(0)cv2.destroyAllWindows()

去枕形畸变失败

import cv2
import numpy as np
import matplotlib.pyplot as plt# 创建一个带有枕形畸变的网格图像
def create_pincushion_distorted_grid(image_size=512, grid_size=20):image = np.zeros((image_size, image_size, 3), dtype=np.uint8)for i in range(0, image_size, grid_size):cv2.line(image, (i, 0), (i, image_size), (255, 255, 255), 1)cv2.line(image, (0, i), (image_size, i), (255, 255, 255), 1)k1, k2, p1, p2, k3 = -0.2, 0, 0, 0, 0  # 负数制造枕形畸变fx, fy = image_size, image_sizecx, cy = image_size / 2, image_size / 2camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]])dist_coeffs = np.array([k1, k2, p1, p2, k3])map1, map2 = cv2.initUndistortRectifyMap(camera_matrix, dist_coeffs, None, camera_matrix, (image_size, image_size), 5)distorted_image = cv2.remap(image, map1, map2, cv2.INTER_LINEAR)return image, distorted_image, camera_matrix, dist_coeffs# 去除枕形畸变
def undistort_image(image, camera_matrix, dist_coeffs):h, w = image.shape[:2]new_camera_matrix, roi = cv2.getOptimalNewCameraMatrix(camera_matrix, dist_coeffs, (w, h), 1, (w, h))undistorted_image = cv2.undistort(image, camera_matrix, dist_coeffs, None, new_camera_matrix)return undistorted_image# 主函数
if __name__ == "__main__":original_grid, distorted_grid, camera_matrix, dist_coeffs = create_pincushion_distorted_grid()# 手动生成去畸变的映射map1, map2 = cv2.initUndistortRectifyMap(camera_matrix, dist_coeffs, None, camera_matrix, (original_grid.shape[1], original_grid.shape[0]), cv2.CV_32FC1)undistorted_grid = cv2.remap(distorted_grid, map1, map2, cv2.INTER_LINEAR)# 使用 OpenCV 展示图像cv2.imshow('Original Image', original_grid)cv2.imshow('Distorted Image', distorted_grid)cv2.imshow('Undistorted Image', undistorted_grid)cv2.waitKey(0)cv2.destroyAllWindows()

http://www.lryc.cn/news/389803.html

相关文章:

  • DC/AC电源模块:为智能家居设备提供恒定的电力供应
  • 小红书运营教程02
  • k8s自动清理节点服务
  • JS如何把年月日转为时间戳
  • 【YOLOv5进阶】——引入注意力机制-以SE为例
  • 【C++题解】1456. 淘淘捡西瓜
  • 用Python读取Word文件并提取标题
  • Windows编程上
  • BiTCN-Attention一键实现回归预测+8张图+特征可视化图!注意力全家桶再更新!
  • zoom缩放问题(关于ElementPlus、Echarts、Vue3draggable等组件偏移问题)
  • 【后端面试题】【中间件】【NoSQL】MongoDB的配置服务器、复制机制、写入语义和面试准备
  • 视频监控汇聚平台LntonCVS视频监控业务平台具体有哪些功能?
  • 我不小心把生产的数据改错了!同事帮我用MySQL的BinLog挽回了罚款
  • Windows系统安装NVM,实现Node.js多版本管理
  • k8s部署单节点redis
  • 云微客矩阵系统:如何利用智能策略引领营销新时代?
  • 嵌入式Linux系统编程 — 6.3 kill、raise、alarm、pause函数向进程发送信号
  • Swoole实践:如何使用协程构建高性能爬虫
  • 基于人脸68特征点识别的美颜算法(一) 大眼算法 C++
  • 算法金 | 欧氏距离算法、余弦相似度、汉明、曼哈顿、切比雪夫、闵可夫斯基、雅卡尔指数、半正矢、Sørensen-Dice
  • 项目实战--Spring Boot大数据量报表Excel优化
  • C#编程技术指南:从入门到精通的全面教程
  • Redis+定式任务实现简易版消息队列
  • 学习在 C# 中使用 Lambda 运算符
  • 数据结构和算法,单链表的实现(kotlin版)
  • Jdk17是否有可能代替 Jdk8
  • oca和 ocp有什么区别
  • 煤矿安全大模型:微调internlm2模型实现针对煤矿事故和煤矿安全知识的智能问答
  • C++中的C++中的虚析构函数的作用和重要性
  • 机器学习 - 文本特征处理之 TF 和 IDF